11 KiB
11 KiB
Pattern Intelligence
Advanced Pattern Recognition and Application System
Pattern Intelligence enables Claude Code to recognize, learn from, and apply successful development patterns while avoiding known anti-patterns and failure modes.
Pattern Recognition Framework
Pattern Types and Detection
pattern_categories:
architectural_patterns:
microservices_adoption:
- service_decomposition_strategies
- inter_service_communication
- data_consistency_patterns
- deployment_orchestration
monolith_to_services:
- strangler_fig_pattern
- database_decomposition
- gradual_migration_strategies
- rollback_safety_nets
event_driven_architecture:
- event_sourcing_patterns
- saga_patterns
- event_store_design
- eventual_consistency_handling
code_patterns:
design_pattern_usage:
- factory_patterns: "Object creation strategies"
- observer_patterns: "Event notification systems"
- strategy_patterns: "Algorithm selection"
- decorator_patterns: "Behavior extension"
anti_pattern_detection:
- god_objects: "Classes with too many responsibilities"
- spaghetti_code: "Unstructured control flow"
- copy_paste_programming: "Code duplication"
- magic_numbers: "Unexplained constants"
workflow_patterns:
development_workflows:
- feature_branch_strategies
- code_review_patterns
- testing_workflows
- deployment_patterns
collaboration_patterns:
- pair_programming_effectiveness
- mob_programming_scenarios
- async_collaboration_tools
- knowledge_sharing_methods
performance_patterns:
optimization_strategies:
- caching_layer_patterns
- database_optimization
- api_efficiency_patterns
- frontend_performance
scaling_patterns:
- horizontal_scaling_strategies
- load_balancing_patterns
- database_sharding
- cdn_utilization
Pattern Recognition Engine
Feature Extraction and Analysis
async def extract_code_patterns(project_path):
"""
Extract patterns from codebase using Claude Code tools
"""
# Use Glob to discover all code files
code_files = await discover_codebase(project_path, "**/*.{ts,js,py,java}")
# Use Read to analyze file contents
file_analyses = await asyncio.gather(*[
analyze_file_patterns(file_path) for file_path in code_files
])
# Use Grep to find specific pattern indicators
pattern_indicators = await search_pattern_indicators(project_path)
# Extract structural patterns
structural_patterns = extract_structural_patterns(file_analyses)
# Identify behavioral patterns
behavioral_patterns = extract_behavioral_patterns(pattern_indicators)
return {
'structural': structural_patterns,
'behavioral': behavioral_patterns,
'quality_metrics': calculate_quality_metrics(file_analyses)
}
async def detect_anti_patterns(codebase_analysis):
"""
Identify problematic patterns that should be avoided
"""
anti_patterns = {
'god_objects': detect_god_objects(codebase_analysis),
'circular_dependencies': detect_circular_deps(codebase_analysis),
'code_duplication': detect_duplication(codebase_analysis),
'performance_issues': detect_performance_anti_patterns(codebase_analysis)
}
# Generate recommendations for each anti-pattern
recommendations = {}
for pattern_type, instances in anti_patterns.items():
if instances:
recommendations[pattern_type] = generate_refactoring_recommendations(
pattern_type, instances
)
return {
'detected_anti_patterns': anti_patterns,
'refactoring_recommendations': recommendations
}
Pattern Similarity and Matching
pattern_matching:
similarity_detection:
1_extract_features:
- normalize_metrics: "Standardize measurements"
- weight_importance: "Prioritize key characteristics"
- create_signature: "Unique pattern identifier"
2_compare_patterns:
- calculate_distance: "Similarity scoring algorithm"
- apply_thresholds: "Minimum similarity requirements"
- rank_matches: "Order by relevance and confidence"
3_validate_match:
- context_compatibility: "Does pattern fit current context?"
- constraint_satisfaction: "Can constraints be met?"
- outcome_prediction: "Likely success probability"
pattern_evolution:
- track_variations: "How patterns adapt over time"
- identify_mutations: "Natural evolution of patterns"
- merge_similar_patterns: "Consolidate redundant patterns"
- deprecate_obsolete: "Remove outdated patterns"
Pattern Application Engine
Intelligent Pattern Recommendation
async def recommend_patterns(current_context, problem_description):
"""
Recommend optimal patterns based on current development context
"""
# Analyze current project state using multiple tools
project_state = await analyze_project_state(current_context)
# Search pattern repository for relevant patterns
candidate_patterns = search_pattern_repository(
problem_description,
project_state.technology_stack,
project_state.constraints
)
# Rank patterns by fit and success probability
ranked_patterns = rank_patterns_by_fit(
candidate_patterns,
project_state,
historical_success_data()
)
# Generate implementation guidance
implementation_guides = []
for pattern in ranked_patterns[:3]: # Top 3 recommendations
guide = await generate_implementation_guide(
pattern,
project_state,
current_context
)
implementation_guides.append(guide)
return {
'recommended_patterns': ranked_patterns,
'implementation_guides': implementation_guides,
'risk_assessments': assess_implementation_risks(ranked_patterns)
}
async def apply_pattern_with_validation(pattern, target_location):
"""
Apply a pattern with built-in validation and rollback capability
"""
# Create backup using git
backup_created = await create_pattern_backup(target_location)
try:
# Apply pattern using appropriate Claude Code tools
if pattern.type == 'code_pattern':
await apply_code_pattern(pattern, target_location)
elif pattern.type == 'architecture_pattern':
await apply_architecture_pattern(pattern, target_location)
elif pattern.type == 'workflow_pattern':
await apply_workflow_pattern(pattern, target_location)
# Validate application using Bash tools
validation_results = await validate_pattern_application(
pattern, target_location
)
if validation_results.success:
await document_pattern_application(pattern, validation_results)
return {'status': 'success', 'validation': validation_results}
else:
await rollback_pattern_application(backup_created)
return {'status': 'failed', 'errors': validation_results.errors}
except Exception as e:
await rollback_pattern_application(backup_created)
return {'status': 'error', 'exception': str(e)}
Pattern Learning and Evolution
Success Pattern Extraction
pattern_learning:
success_identification:
metrics_tracking:
- performance_improvements: "Before/after measurements"
- quality_enhancements: "Bug reduction, maintainability"
- development_velocity: "Feature delivery speed"
- team_satisfaction: "Developer experience metrics"
pattern_attribution:
- isolate_pattern_impact: "What specifically caused improvement?"
- control_for_variables: "Account for other changes"
- measure_confidence: "How certain are we of the attribution?"
failure_analysis:
failure_indicators:
- performance_degradation: "Slower than expected"
- increased_complexity: "Harder to maintain"
- team_resistance: "Adoption difficulties"
- integration_problems: "Doesn't play well with existing code"
root_cause_analysis:
- context_mismatch: "Pattern didn't fit the situation"
- implementation_errors: "Pattern applied incorrectly"
- prerequisite_missing: "Missing foundational elements"
- environmental_factors: "External constraints interfered"
Pattern Repository Management
Pattern Storage and Retrieval
pattern_repository:
pattern_metadata:
identification:
- pattern_id: "unique_identifier"
- pattern_name: "descriptive_name"
- pattern_category: "architectural|code|workflow|performance"
- pattern_tags: ["microservices", "async", "resilient"]
context_information:
- applicable_technologies: ["nodejs", "react", "mongodb"]
- project_sizes: ["small", "medium", "enterprise"]
- team_sizes: ["1-3", "4-10", "10+"]
- complexity_levels: ["simple", "moderate", "complex"]
success_metrics:
- implementation_count: "number_of_times_applied"
- success_rate: "percentage_successful_implementations"
- average_impact: "typical_improvement_metrics"
- confidence_score: "reliability_rating"
search_and_retrieval:
multi_dimensional_search:
- by_problem_type: "What are you trying to solve?"
- by_context: "What's your current situation?"
- by_technology: "What tools are you using?"
- by_constraints: "What limitations do you have?"
intelligent_ranking:
- relevance_score: "How well does this pattern fit?"
- success_probability: "How likely is this to work?"
- implementation_effort: "How hard is this to implement?"
- risk_assessment: "What could go wrong?"
Claude Code Integration Commands
# Pattern discovery and analysis
bmad patterns analyze --project <path>
bmad patterns detect --anti-patterns --project <path>
bmad patterns extract --successful --from-history
# Pattern recommendation and application
bmad patterns recommend --problem "scaling-issues" --context "microservices"
bmad patterns apply --pattern "circuit-breaker" --location "api-gateway"
bmad patterns validate --applied-pattern "event-sourcing"
# Pattern learning and evolution
bmad patterns learn --from-outcome "successful" --project <path>
bmad patterns evolve --pattern-id "microservice-decomposition"
bmad patterns optimize --based-on "recent-applications"
This Pattern Intelligence system transforms Claude Code into a pattern-aware development assistant that can recognize successful approaches, avoid known pitfalls, and continuously learn from development experiences to provide increasingly sophisticated guidance.