# Pattern Intelligence ## Advanced Pattern Recognition and Application System Pattern Intelligence enables Claude Code to recognize, learn from, and apply successful development patterns while avoiding known anti-patterns and failure modes. ### Pattern Recognition Framework #### Pattern Types and Detection ```yaml pattern_categories: architectural_patterns: microservices_adoption: - service_decomposition_strategies - inter_service_communication - data_consistency_patterns - deployment_orchestration monolith_to_services: - strangler_fig_pattern - database_decomposition - gradual_migration_strategies - rollback_safety_nets event_driven_architecture: - event_sourcing_patterns - saga_patterns - event_store_design - eventual_consistency_handling code_patterns: design_pattern_usage: - factory_patterns: "Object creation strategies" - observer_patterns: "Event notification systems" - strategy_patterns: "Algorithm selection" - decorator_patterns: "Behavior extension" anti_pattern_detection: - god_objects: "Classes with too many responsibilities" - spaghetti_code: "Unstructured control flow" - copy_paste_programming: "Code duplication" - magic_numbers: "Unexplained constants" workflow_patterns: development_workflows: - feature_branch_strategies - code_review_patterns - testing_workflows - deployment_patterns collaboration_patterns: - pair_programming_effectiveness - mob_programming_scenarios - async_collaboration_tools - knowledge_sharing_methods performance_patterns: optimization_strategies: - caching_layer_patterns - database_optimization - api_efficiency_patterns - frontend_performance scaling_patterns: - horizontal_scaling_strategies - load_balancing_patterns - database_sharding - cdn_utilization ``` ### Pattern Recognition Engine #### Feature Extraction and Analysis ```python async def extract_code_patterns(project_path): """ Extract patterns from codebase using Claude Code tools """ # Use Glob to discover all code files code_files = await discover_codebase(project_path, "**/*.{ts,js,py,java}") # Use Read to analyze file contents file_analyses = await asyncio.gather(*[ analyze_file_patterns(file_path) for file_path in code_files ]) # Use Grep to find specific pattern indicators pattern_indicators = await search_pattern_indicators(project_path) # Extract structural patterns structural_patterns = extract_structural_patterns(file_analyses) # Identify behavioral patterns behavioral_patterns = extract_behavioral_patterns(pattern_indicators) return { 'structural': structural_patterns, 'behavioral': behavioral_patterns, 'quality_metrics': calculate_quality_metrics(file_analyses) } async def detect_anti_patterns(codebase_analysis): """ Identify problematic patterns that should be avoided """ anti_patterns = { 'god_objects': detect_god_objects(codebase_analysis), 'circular_dependencies': detect_circular_deps(codebase_analysis), 'code_duplication': detect_duplication(codebase_analysis), 'performance_issues': detect_performance_anti_patterns(codebase_analysis) } # Generate recommendations for each anti-pattern recommendations = {} for pattern_type, instances in anti_patterns.items(): if instances: recommendations[pattern_type] = generate_refactoring_recommendations( pattern_type, instances ) return { 'detected_anti_patterns': anti_patterns, 'refactoring_recommendations': recommendations } ``` #### Pattern Similarity and Matching ```yaml pattern_matching: similarity_detection: 1_extract_features: - normalize_metrics: "Standardize measurements" - weight_importance: "Prioritize key characteristics" - create_signature: "Unique pattern identifier" 2_compare_patterns: - calculate_distance: "Similarity scoring algorithm" - apply_thresholds: "Minimum similarity requirements" - rank_matches: "Order by relevance and confidence" 3_validate_match: - context_compatibility: "Does pattern fit current context?" - constraint_satisfaction: "Can constraints be met?" - outcome_prediction: "Likely success probability" pattern_evolution: - track_variations: "How patterns adapt over time" - identify_mutations: "Natural evolution of patterns" - merge_similar_patterns: "Consolidate redundant patterns" - deprecate_obsolete: "Remove outdated patterns" ``` ### Pattern Application Engine #### Intelligent Pattern Recommendation ```python async def recommend_patterns(current_context, problem_description): """ Recommend optimal patterns based on current development context """ # Analyze current project state using multiple tools project_state = await analyze_project_state(current_context) # Search pattern repository for relevant patterns candidate_patterns = search_pattern_repository( problem_description, project_state.technology_stack, project_state.constraints ) # Rank patterns by fit and success probability ranked_patterns = rank_patterns_by_fit( candidate_patterns, project_state, historical_success_data() ) # Generate implementation guidance implementation_guides = [] for pattern in ranked_patterns[:3]: # Top 3 recommendations guide = await generate_implementation_guide( pattern, project_state, current_context ) implementation_guides.append(guide) return { 'recommended_patterns': ranked_patterns, 'implementation_guides': implementation_guides, 'risk_assessments': assess_implementation_risks(ranked_patterns) } async def apply_pattern_with_validation(pattern, target_location): """ Apply a pattern with built-in validation and rollback capability """ # Create backup using git backup_created = await create_pattern_backup(target_location) try: # Apply pattern using appropriate Claude Code tools if pattern.type == 'code_pattern': await apply_code_pattern(pattern, target_location) elif pattern.type == 'architecture_pattern': await apply_architecture_pattern(pattern, target_location) elif pattern.type == 'workflow_pattern': await apply_workflow_pattern(pattern, target_location) # Validate application using Bash tools validation_results = await validate_pattern_application( pattern, target_location ) if validation_results.success: await document_pattern_application(pattern, validation_results) return {'status': 'success', 'validation': validation_results} else: await rollback_pattern_application(backup_created) return {'status': 'failed', 'errors': validation_results.errors} except Exception as e: await rollback_pattern_application(backup_created) return {'status': 'error', 'exception': str(e)} ``` ### Pattern Learning and Evolution #### Success Pattern Extraction ```yaml pattern_learning: success_identification: metrics_tracking: - performance_improvements: "Before/after measurements" - quality_enhancements: "Bug reduction, maintainability" - development_velocity: "Feature delivery speed" - team_satisfaction: "Developer experience metrics" pattern_attribution: - isolate_pattern_impact: "What specifically caused improvement?" - control_for_variables: "Account for other changes" - measure_confidence: "How certain are we of the attribution?" failure_analysis: failure_indicators: - performance_degradation: "Slower than expected" - increased_complexity: "Harder to maintain" - team_resistance: "Adoption difficulties" - integration_problems: "Doesn't play well with existing code" root_cause_analysis: - context_mismatch: "Pattern didn't fit the situation" - implementation_errors: "Pattern applied incorrectly" - prerequisite_missing: "Missing foundational elements" - environmental_factors: "External constraints interfered" ``` ### Pattern Repository Management #### Pattern Storage and Retrieval ```yaml pattern_repository: pattern_metadata: identification: - pattern_id: "unique_identifier" - pattern_name: "descriptive_name" - pattern_category: "architectural|code|workflow|performance" - pattern_tags: ["microservices", "async", "resilient"] context_information: - applicable_technologies: ["nodejs", "react", "mongodb"] - project_sizes: ["small", "medium", "enterprise"] - team_sizes: ["1-3", "4-10", "10+"] - complexity_levels: ["simple", "moderate", "complex"] success_metrics: - implementation_count: "number_of_times_applied" - success_rate: "percentage_successful_implementations" - average_impact: "typical_improvement_metrics" - confidence_score: "reliability_rating" search_and_retrieval: multi_dimensional_search: - by_problem_type: "What are you trying to solve?" - by_context: "What's your current situation?" - by_technology: "What tools are you using?" - by_constraints: "What limitations do you have?" intelligent_ranking: - relevance_score: "How well does this pattern fit?" - success_probability: "How likely is this to work?" - implementation_effort: "How hard is this to implement?" - risk_assessment: "What could go wrong?" ``` ### Claude Code Integration Commands ```bash # Pattern discovery and analysis bmad patterns analyze --project bmad patterns detect --anti-patterns --project bmad patterns extract --successful --from-history # Pattern recommendation and application bmad patterns recommend --problem "scaling-issues" --context "microservices" bmad patterns apply --pattern "circuit-breaker" --location "api-gateway" bmad patterns validate --applied-pattern "event-sourcing" # Pattern learning and evolution bmad patterns learn --from-outcome "successful" --project bmad patterns evolve --pattern-id "microservice-decomposition" bmad patterns optimize --based-on "recent-applications" ``` This Pattern Intelligence system transforms Claude Code into a pattern-aware development assistant that can recognize successful approaches, avoid known pitfalls, and continuously learn from development experiences to provide increasingly sophisticated guidance.