823 lines
33 KiB
Markdown
823 lines
33 KiB
Markdown
# Semantic Understanding Engine
|
|
|
|
## Deep Semantic Analysis and Intent Understanding for Enhanced BMAD System
|
|
|
|
The Semantic Understanding Engine provides sophisticated semantic analysis capabilities that understand the meaning, intent, and context behind code, documentation, and development activities, enabling more intelligent and context-aware assistance.
|
|
|
|
### Semantic Analysis Architecture
|
|
|
|
#### Multi-Modal Semantic Understanding Framework
|
|
```yaml
|
|
semantic_analysis_architecture:
|
|
understanding_domains:
|
|
code_semantics:
|
|
- structural_semantics: "Understanding code structure and relationships"
|
|
- functional_semantics: "Understanding what code does and how"
|
|
- intentional_semantics: "Understanding developer intent behind code"
|
|
- behavioral_semantics: "Understanding code behavior and side effects"
|
|
- evolutionary_semantics: "Understanding how code meaning changes over time"
|
|
|
|
natural_language_semantics:
|
|
- requirement_semantics: "Understanding requirement specifications"
|
|
- documentation_semantics: "Understanding technical documentation"
|
|
- conversation_semantics: "Understanding development discussions"
|
|
- comment_semantics: "Understanding code comments and annotations"
|
|
- query_semantics: "Understanding developer queries and requests"
|
|
|
|
cross_modal_semantics:
|
|
- code_to_language: "Understanding relationships between code and descriptions"
|
|
- language_to_code: "Understanding how descriptions map to code"
|
|
- multimodal_consistency: "Ensuring consistency across modalities"
|
|
- semantic_bridging: "Bridging semantic gaps between modalities"
|
|
- contextual_disambiguation: "Resolving ambiguity using context"
|
|
|
|
domain_semantics:
|
|
- business_domain: "Understanding business logic and rules"
|
|
- technical_domain: "Understanding technical concepts and patterns"
|
|
- architectural_domain: "Understanding system architecture semantics"
|
|
- process_domain: "Understanding development process semantics"
|
|
- team_domain: "Understanding team collaboration semantics"
|
|
|
|
analysis_techniques:
|
|
symbolic_analysis:
|
|
- abstract_syntax_trees: "Structural code analysis"
|
|
- control_flow_graphs: "Code execution flow analysis"
|
|
- data_flow_analysis: "Data movement and transformation analysis"
|
|
- dependency_graphs: "Code dependency relationship analysis"
|
|
- semantic_networks: "Concept relationship networks"
|
|
|
|
statistical_analysis:
|
|
- distributional_semantics: "Meaning from usage patterns"
|
|
- co_occurrence_analysis: "Semantic relationships from co-occurrence"
|
|
- frequency_analysis: "Semantic importance from frequency"
|
|
- clustering_analysis: "Semantic grouping and categorization"
|
|
- dimensionality_reduction: "Semantic space compression"
|
|
|
|
neural_analysis:
|
|
- transformer_models: "Deep contextual understanding"
|
|
- attention_mechanisms: "Focus on semantically important parts"
|
|
- embeddings: "Dense semantic representations"
|
|
- sequence_modeling: "Temporal semantic understanding"
|
|
- multimodal_fusion: "Cross-modal semantic integration"
|
|
|
|
knowledge_based_analysis:
|
|
- ontology_reasoning: "Formal semantic reasoning"
|
|
- rule_based_inference: "Logical semantic deduction"
|
|
- knowledge_graph_traversal: "Semantic relationship exploration"
|
|
- concept_hierarchies: "Hierarchical semantic understanding"
|
|
- semantic_matching: "Semantic similarity and equivalence"
|
|
|
|
understanding_capabilities:
|
|
intent_recognition:
|
|
- development_intent: "What developer wants to accomplish"
|
|
- code_purpose_intent: "Why code was written this way"
|
|
- modification_intent: "What changes are trying to achieve"
|
|
- architectural_intent: "Intended system design and structure"
|
|
- optimization_intent: "Intended improvements and optimizations"
|
|
|
|
context_awareness:
|
|
- project_context: "Understanding within project scope"
|
|
- temporal_context: "Understanding time-dependent semantics"
|
|
- team_context: "Understanding within team dynamics"
|
|
- domain_context: "Understanding within business domain"
|
|
- technical_context: "Understanding within technical constraints"
|
|
|
|
ambiguity_resolution:
|
|
- lexical_disambiguation: "Resolving word meaning ambiguity"
|
|
- syntactic_disambiguation: "Resolving structural ambiguity"
|
|
- semantic_disambiguation: "Resolving meaning ambiguity"
|
|
- pragmatic_disambiguation: "Resolving usage context ambiguity"
|
|
- reference_resolution: "Resolving what entities refer to"
|
|
```
|
|
|
|
#### Semantic Understanding Engine Implementation
|
|
```python
|
|
import ast
|
|
import re
|
|
import spacy
|
|
import networkx as nx
|
|
import numpy as np
|
|
from transformers import AutoTokenizer, AutoModel, pipeline
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
from sklearn.decomposition import LatentDirichletAllocation
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from typing import Dict, List, Any, Optional, Tuple, Union
|
|
from dataclasses import dataclass
|
|
from collections import defaultdict
|
|
import asyncio
|
|
from datetime import datetime
|
|
|
|
@dataclass
|
|
class SemanticContext:
|
|
"""
|
|
Represents semantic context for understanding
|
|
"""
|
|
project_context: Dict[str, Any]
|
|
temporal_context: Dict[str, Any]
|
|
team_context: Dict[str, Any]
|
|
domain_context: Dict[str, Any]
|
|
technical_context: Dict[str, Any]
|
|
|
|
@dataclass
|
|
class SemanticUnderstanding:
|
|
"""
|
|
Represents the result of semantic analysis
|
|
"""
|
|
primary_intent: str
|
|
confidence_score: float
|
|
semantic_concepts: List[str]
|
|
relationships: List[Tuple[str, str, str]] # (entity1, relation, entity2)
|
|
ambiguities: List[Dict[str, Any]]
|
|
context_factors: List[str]
|
|
recommendations: List[str]
|
|
|
|
class SemanticUnderstandingEngine:
|
|
"""
|
|
Advanced semantic understanding and analysis engine
|
|
"""
|
|
|
|
def __init__(self, config=None):
|
|
self.config = config or {
|
|
'semantic_similarity_threshold': 0.7,
|
|
'intent_confidence_threshold': 0.8,
|
|
'max_ambiguity_candidates': 5,
|
|
'context_window_size': 512
|
|
}
|
|
|
|
# Initialize NLP components
|
|
self.nlp = spacy.load("en_core_web_sm")
|
|
self.code_bert = AutoModel.from_pretrained("microsoft/codebert-base")
|
|
self.code_tokenizer = AutoTokenizer.from_pretrained("microsoft/codebert-base")
|
|
|
|
# Initialize specialized analyzers
|
|
self.code_semantic_analyzer = CodeSemanticAnalyzer(self.config)
|
|
self.language_semantic_analyzer = LanguageSemanticAnalyzer(self.config)
|
|
self.intent_recognizer = IntentRecognizer(self.config)
|
|
self.context_analyzer = ContextAnalyzer(self.config)
|
|
self.ambiguity_resolver = AmbiguityResolver(self.config)
|
|
|
|
# Semantic knowledge base
|
|
self.concept_ontology = ConceptOntology()
|
|
self.semantic_patterns = SemanticPatternLibrary()
|
|
|
|
# Cross-modal understanding
|
|
self.multimodal_fusion = MultimodalSemanticFusion(self.config)
|
|
|
|
async def analyze_semantic_understanding(self, input_data, context=None):
|
|
"""
|
|
Perform comprehensive semantic analysis of input data
|
|
"""
|
|
analysis_session = {
|
|
'session_id': generate_uuid(),
|
|
'input_data': input_data,
|
|
'context': context,
|
|
'understanding_results': {},
|
|
'semantic_insights': {},
|
|
'recommendations': []
|
|
}
|
|
|
|
# Determine input type and prepare for analysis
|
|
input_analysis = await self.analyze_input_type(input_data)
|
|
analysis_session['input_analysis'] = input_analysis
|
|
|
|
# Create semantic context
|
|
semantic_context = await self.create_semantic_context(context, input_data)
|
|
analysis_session['semantic_context'] = semantic_context
|
|
|
|
# Perform domain-specific semantic analysis
|
|
understanding_tasks = []
|
|
|
|
if input_analysis['has_code']:
|
|
understanding_tasks.append(
|
|
self.analyze_code_semantics(input_data, semantic_context)
|
|
)
|
|
|
|
if input_analysis['has_natural_language']:
|
|
understanding_tasks.append(
|
|
self.analyze_language_semantics(input_data, semantic_context)
|
|
)
|
|
|
|
if input_analysis['is_multimodal']:
|
|
understanding_tasks.append(
|
|
self.analyze_multimodal_semantics(input_data, semantic_context)
|
|
)
|
|
|
|
# Execute analyses in parallel
|
|
understanding_results = await asyncio.gather(*understanding_tasks)
|
|
|
|
# Integrate results
|
|
integrated_understanding = await self.integrate_semantic_analyses(
|
|
understanding_results,
|
|
semantic_context
|
|
)
|
|
analysis_session['understanding_results'] = integrated_understanding
|
|
|
|
# Recognize primary intent
|
|
primary_intent = await self.intent_recognizer.recognize_intent(
|
|
integrated_understanding,
|
|
semantic_context
|
|
)
|
|
analysis_session['primary_intent'] = primary_intent
|
|
|
|
# Resolve ambiguities
|
|
disambiguation_results = await self.ambiguity_resolver.resolve_ambiguities(
|
|
integrated_understanding,
|
|
semantic_context
|
|
)
|
|
analysis_session['disambiguation_results'] = disambiguation_results
|
|
|
|
# Generate semantic insights
|
|
semantic_insights = await self.generate_semantic_insights(
|
|
integrated_understanding,
|
|
primary_intent,
|
|
disambiguation_results,
|
|
semantic_context
|
|
)
|
|
analysis_session['semantic_insights'] = semantic_insights
|
|
|
|
# Generate recommendations
|
|
recommendations = await self.generate_semantic_recommendations(
|
|
semantic_insights,
|
|
semantic_context
|
|
)
|
|
analysis_session['recommendations'] = recommendations
|
|
|
|
return analysis_session
|
|
|
|
async def analyze_code_semantics(self, input_data, semantic_context):
|
|
"""
|
|
Analyze semantic meaning of code
|
|
"""
|
|
code_semantics = {
|
|
'structural_semantics': {},
|
|
'functional_semantics': {},
|
|
'intentional_semantics': {},
|
|
'behavioral_semantics': {}
|
|
}
|
|
|
|
# Extract code from input data
|
|
code_content = self.extract_code_content(input_data)
|
|
|
|
if not code_content:
|
|
return code_semantics
|
|
|
|
# Analyze structural semantics
|
|
structural_analysis = await self.code_semantic_analyzer.analyze_structural_semantics(
|
|
code_content,
|
|
semantic_context
|
|
)
|
|
code_semantics['structural_semantics'] = structural_analysis
|
|
|
|
# Analyze functional semantics
|
|
functional_analysis = await self.code_semantic_analyzer.analyze_functional_semantics(
|
|
code_content,
|
|
semantic_context
|
|
)
|
|
code_semantics['functional_semantics'] = functional_analysis
|
|
|
|
# Analyze intentional semantics
|
|
intentional_analysis = await self.code_semantic_analyzer.analyze_intentional_semantics(
|
|
code_content,
|
|
semantic_context
|
|
)
|
|
code_semantics['intentional_semantics'] = intentional_analysis
|
|
|
|
# Analyze behavioral semantics
|
|
behavioral_analysis = await self.code_semantic_analyzer.analyze_behavioral_semantics(
|
|
code_content,
|
|
semantic_context
|
|
)
|
|
code_semantics['behavioral_semantics'] = behavioral_analysis
|
|
|
|
return code_semantics
|
|
|
|
async def analyze_language_semantics(self, input_data, semantic_context):
|
|
"""
|
|
Analyze semantic meaning of natural language
|
|
"""
|
|
language_semantics = {
|
|
'entity_semantics': {},
|
|
'relationship_semantics': {},
|
|
'intent_semantics': {},
|
|
'context_semantics': {}
|
|
}
|
|
|
|
# Extract natural language from input data
|
|
text_content = self.extract_text_content(input_data)
|
|
|
|
if not text_content:
|
|
return language_semantics
|
|
|
|
# Analyze entity semantics
|
|
entity_analysis = await self.language_semantic_analyzer.analyze_entity_semantics(
|
|
text_content,
|
|
semantic_context
|
|
)
|
|
language_semantics['entity_semantics'] = entity_analysis
|
|
|
|
# Analyze relationship semantics
|
|
relationship_analysis = await self.language_semantic_analyzer.analyze_relationship_semantics(
|
|
text_content,
|
|
semantic_context
|
|
)
|
|
language_semantics['relationship_semantics'] = relationship_analysis
|
|
|
|
# Analyze intent semantics
|
|
intent_analysis = await self.language_semantic_analyzer.analyze_intent_semantics(
|
|
text_content,
|
|
semantic_context
|
|
)
|
|
language_semantics['intent_semantics'] = intent_analysis
|
|
|
|
# Analyze context semantics
|
|
context_analysis = await self.language_semantic_analyzer.analyze_context_semantics(
|
|
text_content,
|
|
semantic_context
|
|
)
|
|
language_semantics['context_semantics'] = context_analysis
|
|
|
|
return language_semantics
|
|
|
|
async def create_semantic_context(self, context, input_data):
|
|
"""
|
|
Create comprehensive semantic context for analysis
|
|
"""
|
|
semantic_context = SemanticContext(
|
|
project_context={},
|
|
temporal_context={},
|
|
team_context={},
|
|
domain_context={},
|
|
technical_context={}
|
|
)
|
|
|
|
if context:
|
|
# Extract project context
|
|
semantic_context.project_context = await self.context_analyzer.extract_project_context(
|
|
context,
|
|
input_data
|
|
)
|
|
|
|
# Extract temporal context
|
|
semantic_context.temporal_context = await self.context_analyzer.extract_temporal_context(
|
|
context,
|
|
input_data
|
|
)
|
|
|
|
# Extract team context
|
|
semantic_context.team_context = await self.context_analyzer.extract_team_context(
|
|
context,
|
|
input_data
|
|
)
|
|
|
|
# Extract domain context
|
|
semantic_context.domain_context = await self.context_analyzer.extract_domain_context(
|
|
context,
|
|
input_data
|
|
)
|
|
|
|
# Extract technical context
|
|
semantic_context.technical_context = await self.context_analyzer.extract_technical_context(
|
|
context,
|
|
input_data
|
|
)
|
|
|
|
return semantic_context
|
|
|
|
class CodeSemanticAnalyzer:
|
|
"""
|
|
Specialized analyzer for code semantics
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.ast_analyzer = ASTSemanticAnalyzer()
|
|
self.pattern_matcher = CodePatternMatcher()
|
|
|
|
async def analyze_structural_semantics(self, code_content, semantic_context):
|
|
"""
|
|
Analyze the structural semantic meaning of code
|
|
"""
|
|
structural_semantics = {
|
|
'hierarchical_structure': {},
|
|
'modular_relationships': {},
|
|
'dependency_semantics': {},
|
|
'composition_patterns': {}
|
|
}
|
|
|
|
try:
|
|
# Parse code into AST
|
|
tree = ast.parse(code_content)
|
|
|
|
# Analyze hierarchical structure
|
|
hierarchical_analysis = await self.ast_analyzer.analyze_hierarchy(tree)
|
|
structural_semantics['hierarchical_structure'] = hierarchical_analysis
|
|
|
|
# Analyze modular relationships
|
|
modular_analysis = await self.ast_analyzer.analyze_modules(tree)
|
|
structural_semantics['modular_relationships'] = modular_analysis
|
|
|
|
# Analyze dependency semantics
|
|
dependency_analysis = await self.ast_analyzer.analyze_dependencies(tree)
|
|
structural_semantics['dependency_semantics'] = dependency_analysis
|
|
|
|
# Identify composition patterns
|
|
composition_analysis = await self.pattern_matcher.identify_composition_patterns(tree)
|
|
structural_semantics['composition_patterns'] = composition_analysis
|
|
|
|
except SyntaxError as e:
|
|
structural_semantics['error'] = f"Syntax error in code: {str(e)}"
|
|
|
|
return structural_semantics
|
|
|
|
async def analyze_functional_semantics(self, code_content, semantic_context):
|
|
"""
|
|
Analyze what the code functionally does
|
|
"""
|
|
functional_semantics = {
|
|
'primary_functions': [],
|
|
'side_effects': [],
|
|
'data_transformations': [],
|
|
'control_flow_semantics': {}
|
|
}
|
|
|
|
try:
|
|
tree = ast.parse(code_content)
|
|
|
|
# Identify primary functions
|
|
primary_functions = await self.identify_primary_functions(tree)
|
|
functional_semantics['primary_functions'] = primary_functions
|
|
|
|
# Identify side effects
|
|
side_effects = await self.identify_side_effects(tree)
|
|
functional_semantics['side_effects'] = side_effects
|
|
|
|
# Analyze data transformations
|
|
data_transformations = await self.analyze_data_transformations(tree)
|
|
functional_semantics['data_transformations'] = data_transformations
|
|
|
|
# Analyze control flow semantics
|
|
control_flow = await self.analyze_control_flow_semantics(tree)
|
|
functional_semantics['control_flow_semantics'] = control_flow
|
|
|
|
except SyntaxError as e:
|
|
functional_semantics['error'] = f"Syntax error in code: {str(e)}"
|
|
|
|
return functional_semantics
|
|
|
|
async def analyze_intentional_semantics(self, code_content, semantic_context):
|
|
"""
|
|
Analyze the intent behind the code
|
|
"""
|
|
intentional_semantics = {
|
|
'design_intent': {},
|
|
'optimization_intent': {},
|
|
'maintenance_intent': {},
|
|
'feature_intent': {}
|
|
}
|
|
|
|
# Analyze comments and docstrings for intent clues
|
|
intent_clues = await self.extract_intent_clues(code_content)
|
|
|
|
# Analyze naming patterns for intent
|
|
naming_intent = await self.analyze_naming_intent(code_content)
|
|
|
|
# Analyze structural patterns for design intent
|
|
design_intent = await self.analyze_design_intent_patterns(code_content)
|
|
|
|
# Combine analyses
|
|
intentional_semantics['design_intent'] = design_intent
|
|
intentional_semantics['intent_clues'] = intent_clues
|
|
intentional_semantics['naming_intent'] = naming_intent
|
|
|
|
return intentional_semantics
|
|
|
|
async def extract_intent_clues(self, code_content):
|
|
"""
|
|
Extract intent clues from comments and docstrings
|
|
"""
|
|
intent_clues = {
|
|
'explicit_intents': [],
|
|
'implicit_intents': [],
|
|
'design_rationale': [],
|
|
'todo_items': []
|
|
}
|
|
|
|
# Extract comments
|
|
comment_pattern = r'#\s*(.+?)(?:\n|$)'
|
|
comments = re.findall(comment_pattern, code_content)
|
|
|
|
# Extract docstrings
|
|
docstring_pattern = r'"""(.*?)"""'
|
|
docstrings = re.findall(docstring_pattern, code_content, re.DOTALL)
|
|
|
|
# Analyze comments for intent keywords
|
|
intent_keywords = {
|
|
'explicit': ['todo', 'fix', 'hack', 'temporary', 'optimize'],
|
|
'design': ['because', 'reason', 'purpose', 'goal', 'intent'],
|
|
'improvement': ['improve', 'enhance', 'refactor', 'cleanup']
|
|
}
|
|
|
|
for comment in comments:
|
|
comment_lower = comment.lower()
|
|
|
|
# Check for explicit intents
|
|
for keyword in intent_keywords['explicit']:
|
|
if keyword in comment_lower:
|
|
intent_clues['explicit_intents'].append({
|
|
'keyword': keyword,
|
|
'text': comment,
|
|
'confidence': 0.8
|
|
})
|
|
|
|
# Check for design rationale
|
|
for keyword in intent_keywords['design']:
|
|
if keyword in comment_lower:
|
|
intent_clues['design_rationale'].append({
|
|
'keyword': keyword,
|
|
'text': comment,
|
|
'confidence': 0.7
|
|
})
|
|
|
|
return intent_clues
|
|
|
|
class LanguageSemanticAnalyzer:
|
|
"""
|
|
Specialized analyzer for natural language semantics
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.nlp = spacy.load("en_core_web_sm")
|
|
self.entity_linker = EntityLinker()
|
|
self.relation_extractor = RelationExtractor()
|
|
|
|
async def analyze_entity_semantics(self, text_content, semantic_context):
|
|
"""
|
|
Analyze entities and their semantic roles
|
|
"""
|
|
entity_semantics = {
|
|
'named_entities': [],
|
|
'concept_entities': [],
|
|
'technical_entities': [],
|
|
'relationship_entities': []
|
|
}
|
|
|
|
# Process text with spaCy
|
|
doc = self.nlp(text_content)
|
|
|
|
# Extract named entities
|
|
for ent in doc.ents:
|
|
entity_info = {
|
|
'text': ent.text,
|
|
'label': ent.label_,
|
|
'start': ent.start_char,
|
|
'end': ent.end_char,
|
|
'semantic_type': self.classify_entity_semantics(ent)
|
|
}
|
|
entity_semantics['named_entities'].append(entity_info)
|
|
|
|
# Extract technical entities
|
|
technical_entities = await self.extract_technical_entities(text_content)
|
|
entity_semantics['technical_entities'] = technical_entities
|
|
|
|
# Extract concept entities
|
|
concept_entities = await self.extract_concept_entities(text_content, semantic_context)
|
|
entity_semantics['concept_entities'] = concept_entities
|
|
|
|
return entity_semantics
|
|
|
|
async def analyze_relationship_semantics(self, text_content, semantic_context):
|
|
"""
|
|
Analyze semantic relationships between entities
|
|
"""
|
|
relationship_semantics = {
|
|
'explicit_relationships': [],
|
|
'implicit_relationships': [],
|
|
'causal_relationships': [],
|
|
'temporal_relationships': []
|
|
}
|
|
|
|
# Extract explicit relationships
|
|
explicit_rels = await self.relation_extractor.extract_explicit_relations(text_content)
|
|
relationship_semantics['explicit_relationships'] = explicit_rels
|
|
|
|
# Infer implicit relationships
|
|
implicit_rels = await self.relation_extractor.infer_implicit_relations(
|
|
text_content,
|
|
semantic_context
|
|
)
|
|
relationship_semantics['implicit_relationships'] = implicit_rels
|
|
|
|
# Extract causal relationships
|
|
causal_rels = await self.relation_extractor.extract_causal_relations(text_content)
|
|
relationship_semantics['causal_relationships'] = causal_rels
|
|
|
|
# Extract temporal relationships
|
|
temporal_rels = await self.relation_extractor.extract_temporal_relations(text_content)
|
|
relationship_semantics['temporal_relationships'] = temporal_rels
|
|
|
|
return relationship_semantics
|
|
|
|
def classify_entity_semantics(self, entity):
|
|
"""
|
|
Classify the semantic type of an entity
|
|
"""
|
|
semantic_mappings = {
|
|
'PERSON': 'agent',
|
|
'ORG': 'organization',
|
|
'PRODUCT': 'artifact',
|
|
'EVENT': 'process',
|
|
'DATE': 'temporal',
|
|
'TIME': 'temporal',
|
|
'MONEY': 'resource',
|
|
'PERCENT': 'metric'
|
|
}
|
|
|
|
return semantic_mappings.get(entity.label_, 'unknown')
|
|
|
|
class IntentRecognizer:
|
|
"""
|
|
Recognizes intent from semantic analysis results
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.intent_patterns = {
|
|
'information_seeking': [
|
|
'what', 'how', 'why', 'when', 'where', 'explain', 'describe'
|
|
],
|
|
'problem_solving': [
|
|
'fix', 'solve', 'resolve', 'debug', 'troubleshoot'
|
|
],
|
|
'implementation': [
|
|
'implement', 'create', 'build', 'develop', 'code'
|
|
],
|
|
'optimization': [
|
|
'optimize', 'improve', 'enhance', 'faster', 'better'
|
|
],
|
|
'analysis': [
|
|
'analyze', 'review', 'examine', 'evaluate', 'assess'
|
|
]
|
|
}
|
|
|
|
async def recognize_intent(self, semantic_understanding, context):
|
|
"""
|
|
Recognize primary intent from semantic understanding
|
|
"""
|
|
intent_scores = defaultdict(float)
|
|
|
|
# Analyze language semantics for intent keywords
|
|
if 'language_semantics' in semantic_understanding:
|
|
lang_semantics = semantic_understanding['language_semantics']
|
|
|
|
for intent_type, keywords in self.intent_patterns.items():
|
|
for keyword in keywords:
|
|
if any(keyword in str(analysis).lower()
|
|
for analysis in lang_semantics.values()):
|
|
intent_scores[intent_type] += 1.0
|
|
|
|
# Analyze code semantics for implementation intent
|
|
if 'code_semantics' in semantic_understanding:
|
|
code_semantics = semantic_understanding['code_semantics']
|
|
|
|
# Check for implementation patterns
|
|
if code_semantics.get('functional_semantics', {}).get('primary_functions'):
|
|
intent_scores['implementation'] += 2.0
|
|
|
|
# Check for optimization patterns
|
|
if any('optimization' in str(analysis).lower()
|
|
for analysis in code_semantics.get('intentional_semantics', {}).values()):
|
|
intent_scores['optimization'] += 1.5
|
|
|
|
# Determine primary intent
|
|
if intent_scores:
|
|
primary_intent = max(intent_scores.items(), key=lambda x: x[1])
|
|
confidence = min(primary_intent[1] / sum(intent_scores.values()), 1.0)
|
|
|
|
return {
|
|
'intent': primary_intent[0],
|
|
'confidence': confidence,
|
|
'all_scores': dict(intent_scores)
|
|
}
|
|
|
|
return {
|
|
'intent': 'unknown',
|
|
'confidence': 0.0,
|
|
'all_scores': {}
|
|
}
|
|
|
|
class AmbiguityResolver:
|
|
"""
|
|
Resolves semantic ambiguities using context and knowledge
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
|
|
async def resolve_ambiguities(self, semantic_understanding, context):
|
|
"""
|
|
Resolve identified ambiguities in semantic understanding
|
|
"""
|
|
disambiguation_results = {
|
|
'resolved_ambiguities': [],
|
|
'remaining_ambiguities': [],
|
|
'confidence_scores': {}
|
|
}
|
|
|
|
# Identify potential ambiguities
|
|
ambiguities = await self.identify_ambiguities(semantic_understanding)
|
|
|
|
# Resolve each ambiguity using context
|
|
for ambiguity in ambiguities:
|
|
resolution = await self.resolve_single_ambiguity(ambiguity, context)
|
|
|
|
if resolution['confidence'] > self.config['intent_confidence_threshold']:
|
|
disambiguation_results['resolved_ambiguities'].append(resolution)
|
|
else:
|
|
disambiguation_results['remaining_ambiguities'].append(ambiguity)
|
|
|
|
return disambiguation_results
|
|
|
|
async def identify_ambiguities(self, semantic_understanding):
|
|
"""
|
|
Identify potential ambiguities in semantic understanding
|
|
"""
|
|
ambiguities = []
|
|
|
|
# Check for multiple possible intents
|
|
if 'language_semantics' in semantic_understanding:
|
|
intent_semantics = semantic_understanding['language_semantics'].get('intent_semantics', {})
|
|
|
|
if len(intent_semantics.get('possible_intents', [])) > 1:
|
|
ambiguities.append({
|
|
'type': 'intent_ambiguity',
|
|
'candidates': intent_semantics['possible_intents'],
|
|
'context': 'multiple_intents_detected'
|
|
})
|
|
|
|
# Check for ambiguous entity references
|
|
if 'language_semantics' in semantic_understanding:
|
|
entity_semantics = semantic_understanding['language_semantics'].get('entity_semantics', {})
|
|
|
|
for entity in entity_semantics.get('named_entities', []):
|
|
if entity.get('ambiguous', False):
|
|
ambiguities.append({
|
|
'type': 'entity_reference_ambiguity',
|
|
'entity': entity['text'],
|
|
'candidates': entity.get('candidates', []),
|
|
'context': 'ambiguous_entity_reference'
|
|
})
|
|
|
|
return ambiguities
|
|
|
|
async def resolve_single_ambiguity(self, ambiguity, context):
|
|
"""
|
|
Resolve a single ambiguity using available context
|
|
"""
|
|
resolution = {
|
|
'ambiguity_type': ambiguity['type'],
|
|
'original_candidates': ambiguity.get('candidates', []),
|
|
'resolved_value': None,
|
|
'confidence': 0.0,
|
|
'resolution_method': 'context_based'
|
|
}
|
|
|
|
if ambiguity['type'] == 'intent_ambiguity':
|
|
# Use context to determine most likely intent
|
|
resolution = await self.resolve_intent_ambiguity(ambiguity, context)
|
|
elif ambiguity['type'] == 'entity_reference_ambiguity':
|
|
# Use context to determine most likely entity reference
|
|
resolution = await self.resolve_entity_ambiguity(ambiguity, context)
|
|
|
|
return resolution
|
|
```
|
|
|
|
### Semantic Analysis Commands
|
|
|
|
```bash
|
|
# Semantic understanding and analysis
|
|
bmad semantic analyze --input "code-file.py" --context "project-requirements"
|
|
bmad semantic understand --query "implement user authentication" --deep-analysis
|
|
bmad semantic extract --concepts --from "documentation/" --relationships
|
|
|
|
# Intent recognition and disambiguation
|
|
bmad semantic intent --recognize --from "user-query" --confidence-threshold 0.8
|
|
bmad semantic disambiguate --ambiguous-terms --use-context
|
|
bmad semantic clarify --unclear-requirements --suggest-interpretations
|
|
|
|
# Cross-modal semantic analysis
|
|
bmad semantic bridge --code-to-language --explain "function-implementation"
|
|
bmad semantic consistency --check --across "code,docs,comments"
|
|
bmad semantic map --requirements-to-code --show-gaps
|
|
|
|
# Semantic insights and recommendations
|
|
bmad semantic insights --generate --focus "intent-code-alignment"
|
|
bmad semantic recommend --improvements --based-on-semantics
|
|
bmad semantic export --understanding --format "knowledge-graph"
|
|
```
|
|
|
|
<function_calls>
|
|
<invoke name="TodoWrite">
|
|
<parameter name="todos">[{"content": "Phase 1: Core Intelligence Foundation - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase1"}, {"content": "Phase 2: LLM Integration and Knowledge Management - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase2"}, {"content": "Create LLM Abstraction Framework", "status": "completed", "priority": "high", "id": "2.1"}, {"content": "Implement Knowledge Management Core", "status": "completed", "priority": "high", "id": "2.2"}, {"content": "Build Cross-Project Learning System", "status": "completed", "priority": "high", "id": "2.3"}, {"content": "Develop Advanced Memory Architecture", "status": "completed", "priority": "high", "id": "2.4"}, {"content": "Create Universal Workflow Engine", "status": "completed", "priority": "high", "id": "2.5"}, {"content": "Implement Knowledge Discovery Platform", "status": "completed", "priority": "high", "id": "2.6"}, {"content": "Build Semantic Analysis Engine", "status": "completed", "priority": "high", "id": "2.7"}, {"content": "Phase 3: Advanced Intelligence and Claude Code Integration", "status": "pending", "priority": "medium", "id": "phase3"}, {"content": "Phase 4: Self-Optimization and Enterprise Features", "status": "pending", "priority": "medium", "id": "phase4"}] |