977 lines
40 KiB
Markdown
977 lines
40 KiB
Markdown
# Advanced Monitoring & Analytics
|
|
|
|
## Enterprise-Scale Monitoring and Analytics Platform for Enhanced BMAD System
|
|
|
|
The Advanced Monitoring & Analytics module provides sophisticated enterprise-grade monitoring, observability, and analytics capabilities that enable comprehensive visibility, predictive insights, and intelligent automation across all systems, processes, and business operations with real-time analytics and AI-powered monitoring.
|
|
|
|
### Advanced Monitoring & Analytics Architecture
|
|
|
|
#### Comprehensive Monitoring and Analytics Platform
|
|
```yaml
|
|
advanced_monitoring_analytics:
|
|
monitoring_domains:
|
|
infrastructure_monitoring:
|
|
- system_performance_monitoring: "Real-time system performance monitoring and alerting"
|
|
- network_monitoring_and_analysis: "Network performance monitoring and traffic analysis"
|
|
- storage_monitoring_and_optimization: "Storage performance monitoring and capacity planning"
|
|
- cloud_infrastructure_monitoring: "Multi-cloud infrastructure monitoring and optimization"
|
|
- container_and_kubernetes_monitoring: "Container orchestration monitoring and observability"
|
|
|
|
application_monitoring:
|
|
- application_performance_monitoring: "APM with distributed tracing and profiling"
|
|
- user_experience_monitoring: "Real user monitoring and synthetic testing"
|
|
- api_monitoring_and_analytics: "API performance monitoring and usage analytics"
|
|
- microservices_observability: "Microservices monitoring and service mesh observability"
|
|
- database_performance_monitoring: "Database performance monitoring and optimization"
|
|
|
|
business_process_monitoring:
|
|
- business_transaction_monitoring: "End-to-end business transaction monitoring"
|
|
- workflow_performance_monitoring: "Workflow execution monitoring and optimization"
|
|
- sla_and_kpi_monitoring: "SLA compliance and KPI performance monitoring"
|
|
- customer_journey_analytics: "Customer journey monitoring and experience analytics"
|
|
- operational_efficiency_monitoring: "Operational process efficiency monitoring"
|
|
|
|
security_monitoring:
|
|
- security_event_monitoring: "Real-time security event monitoring and correlation"
|
|
- threat_detection_and_analysis: "Advanced threat detection and behavioral analysis"
|
|
- compliance_monitoring: "Continuous compliance monitoring and reporting"
|
|
- access_pattern_monitoring: "User access pattern monitoring and anomaly detection"
|
|
- data_security_monitoring: "Data access monitoring and protection analytics"
|
|
|
|
log_management_and_analysis:
|
|
- centralized_log_aggregation: "Centralized log collection and aggregation"
|
|
- log_parsing_and_enrichment: "Intelligent log parsing and data enrichment"
|
|
- log_analytics_and_insights: "Advanced log analytics and pattern recognition"
|
|
- audit_trail_management: "Comprehensive audit trail management and analysis"
|
|
- log_retention_and_archival: "Intelligent log retention and archival strategies"
|
|
|
|
analytics_capabilities:
|
|
real_time_analytics:
|
|
- streaming_data_processing: "Real-time streaming data processing and analysis"
|
|
- event_correlation_and_analysis: "Real-time event correlation and impact analysis"
|
|
- anomaly_detection_algorithms: "ML-powered anomaly detection and alerting"
|
|
- threshold_based_alerting: "Intelligent threshold-based monitoring and alerting"
|
|
- real_time_dashboard_updates: "Real-time dashboard updates and visualizations"
|
|
|
|
predictive_analytics:
|
|
- capacity_planning_predictions: "Predictive capacity planning and resource forecasting"
|
|
- performance_degradation_prediction: "Performance degradation prediction and prevention"
|
|
- failure_prediction_and_prevention: "System failure prediction and proactive prevention"
|
|
- demand_forecasting: "Demand forecasting and resource optimization"
|
|
- trend_analysis_and_projection: "Trend analysis and future projection modeling"
|
|
|
|
behavioral_analytics:
|
|
- user_behavior_analytics: "User behavior analysis and pattern recognition"
|
|
- system_behavior_profiling: "System behavior profiling and deviation detection"
|
|
- application_usage_analytics: "Application usage patterns and optimization insights"
|
|
- resource_utilization_patterns: "Resource utilization pattern analysis and optimization"
|
|
- performance_pattern_recognition: "Performance pattern recognition and correlation"
|
|
|
|
business_analytics:
|
|
- operational_intelligence: "Operational intelligence and business insights"
|
|
- customer_analytics: "Customer behavior analytics and segmentation"
|
|
- financial_performance_analytics: "Financial performance monitoring and analysis"
|
|
- market_intelligence_integration: "Market intelligence integration and analysis"
|
|
- competitive_analysis_monitoring: "Competitive landscape monitoring and analysis"
|
|
|
|
observability_platform:
|
|
distributed_tracing:
|
|
- end_to_end_request_tracing: "End-to-end request tracing across microservices"
|
|
- service_dependency_mapping: "Service dependency mapping and visualization"
|
|
- performance_bottleneck_identification: "Performance bottleneck identification and analysis"
|
|
- error_propagation_tracking: "Error propagation tracking and root cause analysis"
|
|
- trace_sampling_and_optimization: "Intelligent trace sampling and storage optimization"
|
|
|
|
metrics_collection_and_analysis:
|
|
- custom_metrics_definition: "Custom business and technical metrics definition"
|
|
- metrics_aggregation_and_rollup: "Metrics aggregation and time-series rollup"
|
|
- multi_dimensional_metrics: "Multi-dimensional metrics collection and analysis"
|
|
- metrics_correlation_analysis: "Cross-metrics correlation and relationship analysis"
|
|
- metrics_based_alerting: "Metrics-based intelligent alerting and escalation"
|
|
|
|
event_driven_monitoring:
|
|
- event_stream_processing: "Real-time event stream processing and analysis"
|
|
- complex_event_processing: "Complex event processing and pattern matching"
|
|
- event_correlation_engines: "Multi-source event correlation and analysis"
|
|
- event_driven_automation: "Event-driven automation and response systems"
|
|
- event_sourcing_and_replay: "Event sourcing and historical event replay"
|
|
|
|
visualization_and_dashboards:
|
|
- interactive_dashboard_creation: "Interactive dashboard creation and customization"
|
|
- real_time_data_visualization: "Real-time data visualization and updates"
|
|
- drill_down_and_exploration: "Multi-level drill-down and data exploration"
|
|
- mobile_responsive_dashboards: "Mobile-responsive dashboard interfaces"
|
|
- collaborative_dashboard_sharing: "Collaborative dashboard sharing and annotation"
|
|
|
|
automation_and_intelligence:
|
|
intelligent_alerting:
|
|
- smart_alert_correlation: "Smart alert correlation and noise reduction"
|
|
- contextual_alert_enrichment: "Contextual alert enrichment and prioritization"
|
|
- predictive_alerting: "Predictive alerting based on trend analysis"
|
|
- escalation_and_routing: "Intelligent alert escalation and routing"
|
|
- alert_feedback_learning: "Alert feedback learning and optimization"
|
|
|
|
automated_remediation:
|
|
- self_healing_systems: "Self-healing system automation and recovery"
|
|
- automated_scaling_responses: "Automated scaling responses to demand changes"
|
|
- performance_optimization_automation: "Automated performance optimization actions"
|
|
- security_response_automation: "Automated security incident response"
|
|
- workflow_automation_triggers: "Monitoring-driven workflow automation triggers"
|
|
|
|
machine_learning_integration:
|
|
- anomaly_detection_models: "ML-powered anomaly detection and classification"
|
|
- predictive_maintenance_models: "Predictive maintenance and lifecycle management"
|
|
- optimization_recommendation_engines: "ML-driven optimization recommendation engines"
|
|
- natural_language_processing: "NLP for log analysis and alert interpretation"
|
|
- reinforcement_learning_optimization: "RL-based system optimization and tuning"
|
|
|
|
aiops_capabilities:
|
|
- intelligent_incident_management: "AI-powered incident management and resolution"
|
|
- root_cause_analysis_automation: "Automated root cause analysis and diagnosis"
|
|
- performance_optimization_ai: "AI-driven performance optimization recommendations"
|
|
- capacity_planning_ai: "AI-powered capacity planning and resource optimization"
|
|
- predictive_analytics_ai: "AI-enhanced predictive analytics and forecasting"
|
|
```
|
|
|
|
#### Advanced Monitoring & Analytics Implementation
|
|
```python
|
|
import asyncio
|
|
import pandas as pd
|
|
import numpy as np
|
|
from typing import Dict, List, Any, Optional, Tuple, Union
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
from datetime import datetime, timedelta
|
|
import json
|
|
import uuid
|
|
from collections import defaultdict, deque
|
|
import logging
|
|
from abc import ABC, abstractmethod
|
|
import time
|
|
import threading
|
|
import multiprocessing
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
import psutil
|
|
import networkx as nx
|
|
from sklearn.ensemble import IsolationForest
|
|
from sklearn.cluster import DBSCAN
|
|
from sklearn.preprocessing import StandardScaler
|
|
import plotly.graph_objects as go
|
|
import plotly.express as px
|
|
from scipy import stats
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
|
|
class MonitoringType(Enum):
|
|
INFRASTRUCTURE = "infrastructure"
|
|
APPLICATION = "application"
|
|
BUSINESS = "business"
|
|
SECURITY = "security"
|
|
NETWORK = "network"
|
|
USER_EXPERIENCE = "user_experience"
|
|
|
|
class AlertSeverity(Enum):
|
|
CRITICAL = "critical"
|
|
HIGH = "high"
|
|
MEDIUM = "medium"
|
|
LOW = "low"
|
|
INFO = "info"
|
|
|
|
class MetricType(Enum):
|
|
COUNTER = "counter"
|
|
GAUGE = "gauge"
|
|
HISTOGRAM = "histogram"
|
|
SUMMARY = "summary"
|
|
TIMER = "timer"
|
|
|
|
class AnalyticsType(Enum):
|
|
DESCRIPTIVE = "descriptive"
|
|
DIAGNOSTIC = "diagnostic"
|
|
PREDICTIVE = "predictive"
|
|
PRESCRIPTIVE = "prescriptive"
|
|
|
|
@dataclass
|
|
class MonitoringMetric:
|
|
"""
|
|
Represents a monitoring metric with metadata and configuration
|
|
"""
|
|
metric_id: str
|
|
name: str
|
|
type: MetricType
|
|
monitoring_type: MonitoringType
|
|
description: str
|
|
unit: str
|
|
collection_interval: int # seconds
|
|
retention_period: int # days
|
|
labels: Dict[str, str] = field(default_factory=dict)
|
|
thresholds: Dict[str, float] = field(default_factory=dict)
|
|
aggregation_rules: List[str] = field(default_factory=list)
|
|
alerting_enabled: bool = True
|
|
|
|
@dataclass
|
|
class MonitoringAlert:
|
|
"""
|
|
Represents a monitoring alert with context and severity
|
|
"""
|
|
alert_id: str
|
|
title: str
|
|
description: str
|
|
severity: AlertSeverity
|
|
monitoring_type: MonitoringType
|
|
triggered_time: datetime
|
|
source_metric: str
|
|
current_value: float
|
|
threshold_value: float
|
|
labels: Dict[str, str] = field(default_factory=dict)
|
|
context: Dict[str, Any] = field(default_factory=dict)
|
|
escalation_rules: List[Dict[str, Any]] = field(default_factory=list)
|
|
resolution_time: Optional[datetime] = None
|
|
acknowledged: bool = False
|
|
|
|
@dataclass
|
|
class AnalyticsInsight:
|
|
"""
|
|
Represents an analytics insight generated from monitoring data
|
|
"""
|
|
insight_id: str
|
|
title: str
|
|
description: str
|
|
analytics_type: AnalyticsType
|
|
confidence_score: float
|
|
impact_level: str # high, medium, low
|
|
time_horizon: str # immediate, short_term, medium_term, long_term
|
|
affected_systems: List[str] = field(default_factory=list)
|
|
recommendations: List[str] = field(default_factory=list)
|
|
supporting_data: Dict[str, Any] = field(default_factory=dict)
|
|
created_time: datetime = field(default_factory=datetime.utcnow)
|
|
|
|
class AdvancedMonitoringAnalytics:
|
|
"""
|
|
Enterprise-scale monitoring and analytics platform
|
|
"""
|
|
|
|
def __init__(self, claude_code_interface, config=None):
|
|
self.claude_code = claude_code_interface
|
|
self.config = config or {
|
|
'real_time_processing': True,
|
|
'predictive_analytics': True,
|
|
'anomaly_detection': True,
|
|
'automated_remediation': True,
|
|
'alert_correlation': True,
|
|
'data_retention_days': 365,
|
|
'metrics_collection_interval': 60,
|
|
'alert_evaluation_interval': 30,
|
|
'ml_model_training_interval_hours': 24
|
|
}
|
|
|
|
# Core monitoring components
|
|
self.metrics_collector = MetricsCollector(self.claude_code, self.config)
|
|
self.log_manager = LogManager(self.config)
|
|
self.event_processor = EventProcessor(self.config)
|
|
self.trace_manager = DistributedTraceManager(self.config)
|
|
|
|
# Analytics engines
|
|
self.real_time_analytics = RealTimeAnalyticsEngine(self.config)
|
|
self.predictive_analytics = PredictiveAnalyticsEngine(self.config)
|
|
self.behavioral_analytics = BehavioralAnalyticsEngine(self.config)
|
|
self.business_analytics = BusinessAnalyticsEngine(self.config)
|
|
|
|
# Alerting and automation
|
|
self.alert_manager = AlertManager(self.config)
|
|
self.automation_engine = MonitoringAutomationEngine(self.config)
|
|
self.remediation_engine = AutomatedRemediationEngine(self.config)
|
|
self.escalation_manager = EscalationManager(self.config)
|
|
|
|
# Observability platform
|
|
self.observability_platform = ObservabilityPlatform(self.config)
|
|
self.dashboard_service = MonitoringDashboardService(self.config)
|
|
self.visualization_engine = VisualizationEngine(self.config)
|
|
self.reporting_engine = MonitoringReportingEngine(self.config)
|
|
|
|
# AI and ML components
|
|
self.anomaly_detector = AnomalyDetector(self.config)
|
|
self.ml_engine = MonitoringMLEngine(self.config)
|
|
self.aiops_engine = AIOpsEngine(self.config)
|
|
self.nlp_processor = LogNLPProcessor(self.config)
|
|
|
|
# State management
|
|
self.metric_repository = MetricRepository()
|
|
self.alert_repository = AlertRepository()
|
|
self.insight_repository = InsightRepository()
|
|
self.monitoring_state = MonitoringState()
|
|
|
|
# Integration and data management
|
|
self.data_pipeline = MonitoringDataPipeline(self.config)
|
|
self.integration_manager = MonitoringIntegrationManager(self.config)
|
|
self.storage_manager = MonitoringStorageManager(self.config)
|
|
|
|
async def setup_comprehensive_monitoring(self, monitoring_scope, requirements):
|
|
"""
|
|
Setup comprehensive monitoring across all domains
|
|
"""
|
|
monitoring_setup = {
|
|
'setup_id': generate_uuid(),
|
|
'start_time': datetime.utcnow(),
|
|
'monitoring_scope': monitoring_scope,
|
|
'requirements': requirements,
|
|
'infrastructure_monitoring': {},
|
|
'application_monitoring': {},
|
|
'business_monitoring': {},
|
|
'security_monitoring': {},
|
|
'analytics_configuration': {}
|
|
}
|
|
|
|
try:
|
|
# Analyze monitoring requirements
|
|
monitoring_analysis = await self.analyze_monitoring_requirements(
|
|
monitoring_scope,
|
|
requirements
|
|
)
|
|
monitoring_setup['monitoring_analysis'] = monitoring_analysis
|
|
|
|
# Setup infrastructure monitoring
|
|
infrastructure_monitoring = await self.setup_infrastructure_monitoring(
|
|
monitoring_analysis
|
|
)
|
|
monitoring_setup['infrastructure_monitoring'] = infrastructure_monitoring
|
|
|
|
# Setup application monitoring
|
|
application_monitoring = await self.setup_application_monitoring(
|
|
monitoring_analysis
|
|
)
|
|
monitoring_setup['application_monitoring'] = application_monitoring
|
|
|
|
# Setup business process monitoring
|
|
business_monitoring = await self.setup_business_monitoring(
|
|
monitoring_analysis
|
|
)
|
|
monitoring_setup['business_monitoring'] = business_monitoring
|
|
|
|
# Setup security monitoring
|
|
security_monitoring = await self.setup_security_monitoring(
|
|
monitoring_analysis
|
|
)
|
|
monitoring_setup['security_monitoring'] = security_monitoring
|
|
|
|
# Configure analytics and AI
|
|
analytics_configuration = await self.configure_monitoring_analytics(
|
|
monitoring_analysis
|
|
)
|
|
monitoring_setup['analytics_configuration'] = analytics_configuration
|
|
|
|
# Setup alerting and automation
|
|
alerting_setup = await self.setup_alerting_and_automation(
|
|
monitoring_setup
|
|
)
|
|
monitoring_setup['alerting_setup'] = alerting_setup
|
|
|
|
# Configure dashboards and visualization
|
|
dashboard_setup = await self.setup_monitoring_dashboards(
|
|
monitoring_setup
|
|
)
|
|
monitoring_setup['dashboard_setup'] = dashboard_setup
|
|
|
|
# Initialize data pipeline
|
|
data_pipeline_setup = await self.initialize_monitoring_data_pipeline(
|
|
monitoring_setup
|
|
)
|
|
monitoring_setup['data_pipeline_setup'] = data_pipeline_setup
|
|
|
|
except Exception as e:
|
|
monitoring_setup['error'] = str(e)
|
|
|
|
finally:
|
|
monitoring_setup['end_time'] = datetime.utcnow()
|
|
monitoring_setup['setup_duration'] = (
|
|
monitoring_setup['end_time'] - monitoring_setup['start_time']
|
|
).total_seconds()
|
|
|
|
return monitoring_setup
|
|
|
|
async def analyze_monitoring_requirements(self, monitoring_scope, requirements):
|
|
"""
|
|
Analyze monitoring requirements and scope
|
|
"""
|
|
monitoring_analysis = {
|
|
'infrastructure_requirements': {},
|
|
'application_requirements': {},
|
|
'business_requirements': {},
|
|
'compliance_requirements': {},
|
|
'performance_requirements': {},
|
|
'scalability_requirements': {},
|
|
'integration_requirements': {}
|
|
}
|
|
|
|
# Analyze infrastructure requirements
|
|
infrastructure_requirements = await self.analyze_infrastructure_monitoring_requirements(
|
|
monitoring_scope,
|
|
requirements
|
|
)
|
|
monitoring_analysis['infrastructure_requirements'] = infrastructure_requirements
|
|
|
|
# Analyze application requirements
|
|
application_requirements = await self.analyze_application_monitoring_requirements(
|
|
monitoring_scope,
|
|
requirements
|
|
)
|
|
monitoring_analysis['application_requirements'] = application_requirements
|
|
|
|
# Analyze business requirements
|
|
business_requirements = await self.analyze_business_monitoring_requirements(
|
|
monitoring_scope,
|
|
requirements
|
|
)
|
|
monitoring_analysis['business_requirements'] = business_requirements
|
|
|
|
# Analyze compliance requirements
|
|
compliance_requirements = await self.analyze_compliance_monitoring_requirements(
|
|
requirements
|
|
)
|
|
monitoring_analysis['compliance_requirements'] = compliance_requirements
|
|
|
|
return monitoring_analysis
|
|
|
|
async def perform_real_time_analytics(self, data_stream):
|
|
"""
|
|
Perform real-time analytics on streaming monitoring data
|
|
"""
|
|
analytics_session = {
|
|
'session_id': generate_uuid(),
|
|
'start_time': datetime.utcnow(),
|
|
'data_points_processed': 0,
|
|
'anomalies_detected': [],
|
|
'patterns_identified': [],
|
|
'alerts_generated': [],
|
|
'insights_generated': []
|
|
}
|
|
|
|
try:
|
|
# Process data stream in real-time
|
|
async for data_batch in data_stream:
|
|
# Update data points counter
|
|
analytics_session['data_points_processed'] += len(data_batch)
|
|
|
|
# Perform anomaly detection
|
|
anomalies = await self.anomaly_detector.detect_anomalies_batch(data_batch)
|
|
if anomalies:
|
|
analytics_session['anomalies_detected'].extend(anomalies)
|
|
|
|
# Generate alerts for anomalies
|
|
anomaly_alerts = await self.generate_anomaly_alerts(anomalies)
|
|
analytics_session['alerts_generated'].extend(anomaly_alerts)
|
|
|
|
# Identify patterns
|
|
patterns = await self.real_time_analytics.identify_patterns(data_batch)
|
|
analytics_session['patterns_identified'].extend(patterns)
|
|
|
|
# Generate real-time insights
|
|
insights = await self.generate_real_time_insights(
|
|
data_batch,
|
|
anomalies,
|
|
patterns
|
|
)
|
|
analytics_session['insights_generated'].extend(insights)
|
|
|
|
# Update monitoring state
|
|
await self.monitoring_state.update_from_batch(data_batch)
|
|
|
|
# Process alerts and automation
|
|
for alert in anomaly_alerts:
|
|
await self.alert_manager.process_alert(alert)
|
|
|
|
except Exception as e:
|
|
analytics_session['error'] = str(e)
|
|
|
|
finally:
|
|
analytics_session['end_time'] = datetime.utcnow()
|
|
analytics_session['processing_duration'] = (
|
|
analytics_session['end_time'] - analytics_session['start_time']
|
|
).total_seconds()
|
|
|
|
return analytics_session
|
|
|
|
async def generate_predictive_insights(self, historical_data, prediction_horizon="7d"):
|
|
"""
|
|
Generate predictive insights from historical monitoring data
|
|
"""
|
|
prediction_session = {
|
|
'session_id': generate_uuid(),
|
|
'start_time': datetime.utcnow(),
|
|
'prediction_horizon': prediction_horizon,
|
|
'data_analyzed': len(historical_data),
|
|
'predictions_generated': [],
|
|
'risk_assessments': [],
|
|
'recommendations': []
|
|
}
|
|
|
|
try:
|
|
# Prepare data for prediction
|
|
prepared_data = await self.predictive_analytics.prepare_prediction_data(
|
|
historical_data
|
|
)
|
|
|
|
# Generate capacity predictions
|
|
capacity_predictions = await self.predictive_analytics.predict_capacity_requirements(
|
|
prepared_data,
|
|
prediction_horizon
|
|
)
|
|
prediction_session['predictions_generated'].extend(capacity_predictions)
|
|
|
|
# Generate performance predictions
|
|
performance_predictions = await self.predictive_analytics.predict_performance_trends(
|
|
prepared_data,
|
|
prediction_horizon
|
|
)
|
|
prediction_session['predictions_generated'].extend(performance_predictions)
|
|
|
|
# Generate failure risk predictions
|
|
failure_predictions = await self.predictive_analytics.predict_failure_risks(
|
|
prepared_data,
|
|
prediction_horizon
|
|
)
|
|
prediction_session['predictions_generated'].extend(failure_predictions)
|
|
|
|
# Assess risks based on predictions
|
|
risk_assessments = await self.assess_prediction_risks(
|
|
prediction_session['predictions_generated']
|
|
)
|
|
prediction_session['risk_assessments'] = risk_assessments
|
|
|
|
# Generate recommendations
|
|
recommendations = await self.generate_predictive_recommendations(
|
|
prediction_session['predictions_generated'],
|
|
risk_assessments
|
|
)
|
|
prediction_session['recommendations'] = recommendations
|
|
|
|
# Create predictive alerts
|
|
predictive_alerts = await self.create_predictive_alerts(
|
|
prediction_session['predictions_generated'],
|
|
risk_assessments
|
|
)
|
|
prediction_session['predictive_alerts'] = predictive_alerts
|
|
|
|
except Exception as e:
|
|
prediction_session['error'] = str(e)
|
|
|
|
finally:
|
|
prediction_session['end_time'] = datetime.utcnow()
|
|
prediction_session['prediction_duration'] = (
|
|
prediction_session['end_time'] - prediction_session['start_time']
|
|
).total_seconds()
|
|
|
|
return prediction_session
|
|
|
|
async def setup_infrastructure_monitoring(self, monitoring_analysis):
|
|
"""
|
|
Setup comprehensive infrastructure monitoring
|
|
"""
|
|
infrastructure_monitoring = {
|
|
'system_monitoring': {},
|
|
'network_monitoring': {},
|
|
'storage_monitoring': {},
|
|
'cloud_monitoring': {},
|
|
'container_monitoring': {}
|
|
}
|
|
|
|
# Setup system performance monitoring
|
|
system_monitoring = await self.setup_system_monitoring()
|
|
infrastructure_monitoring['system_monitoring'] = system_monitoring
|
|
|
|
# Setup network monitoring
|
|
network_monitoring = await self.setup_network_monitoring()
|
|
infrastructure_monitoring['network_monitoring'] = network_monitoring
|
|
|
|
# Setup storage monitoring
|
|
storage_monitoring = await self.setup_storage_monitoring()
|
|
infrastructure_monitoring['storage_monitoring'] = storage_monitoring
|
|
|
|
# Setup cloud monitoring
|
|
cloud_monitoring = await self.setup_cloud_monitoring()
|
|
infrastructure_monitoring['cloud_monitoring'] = cloud_monitoring
|
|
|
|
return infrastructure_monitoring
|
|
|
|
async def setup_system_monitoring(self):
|
|
"""
|
|
Setup system performance monitoring
|
|
"""
|
|
system_monitoring = {
|
|
'cpu_monitoring': True,
|
|
'memory_monitoring': True,
|
|
'disk_monitoring': True,
|
|
'process_monitoring': True,
|
|
'service_monitoring': True
|
|
}
|
|
|
|
# Configure CPU monitoring
|
|
cpu_metrics = [
|
|
MonitoringMetric(
|
|
metric_id="system_cpu_usage",
|
|
name="CPU Usage Percentage",
|
|
type=MetricType.GAUGE,
|
|
monitoring_type=MonitoringType.INFRASTRUCTURE,
|
|
description="System CPU utilization percentage",
|
|
unit="percent",
|
|
collection_interval=60,
|
|
retention_period=90,
|
|
thresholds={
|
|
'warning': 70.0,
|
|
'critical': 90.0
|
|
}
|
|
),
|
|
MonitoringMetric(
|
|
metric_id="system_load_average",
|
|
name="System Load Average",
|
|
type=MetricType.GAUGE,
|
|
monitoring_type=MonitoringType.INFRASTRUCTURE,
|
|
description="System load average (1, 5, 15 minutes)",
|
|
unit="load",
|
|
collection_interval=60,
|
|
retention_period=90,
|
|
thresholds={
|
|
'warning': 2.0,
|
|
'critical': 4.0
|
|
}
|
|
)
|
|
]
|
|
|
|
# Configure memory monitoring
|
|
memory_metrics = [
|
|
MonitoringMetric(
|
|
metric_id="system_memory_usage",
|
|
name="Memory Usage Percentage",
|
|
type=MetricType.GAUGE,
|
|
monitoring_type=MonitoringType.INFRASTRUCTURE,
|
|
description="System memory utilization percentage",
|
|
unit="percent",
|
|
collection_interval=60,
|
|
retention_period=90,
|
|
thresholds={
|
|
'warning': 80.0,
|
|
'critical': 95.0
|
|
}
|
|
)
|
|
]
|
|
|
|
# Register metrics
|
|
for metric in cpu_metrics + memory_metrics:
|
|
await self.metric_repository.register_metric(metric)
|
|
|
|
system_monitoring['metrics_configured'] = len(cpu_metrics + memory_metrics)
|
|
|
|
return system_monitoring
|
|
|
|
async def setup_application_monitoring(self, monitoring_analysis):
|
|
"""
|
|
Setup comprehensive application monitoring
|
|
"""
|
|
application_monitoring = {
|
|
'apm_configuration': {},
|
|
'user_experience_monitoring': {},
|
|
'api_monitoring': {},
|
|
'database_monitoring': {},
|
|
'microservices_monitoring': {}
|
|
}
|
|
|
|
# Configure APM
|
|
apm_configuration = await self.configure_application_performance_monitoring()
|
|
application_monitoring['apm_configuration'] = apm_configuration
|
|
|
|
# Configure user experience monitoring
|
|
ux_monitoring = await self.configure_user_experience_monitoring()
|
|
application_monitoring['user_experience_monitoring'] = ux_monitoring
|
|
|
|
# Configure API monitoring
|
|
api_monitoring = await self.configure_api_monitoring()
|
|
application_monitoring['api_monitoring'] = api_monitoring
|
|
|
|
return application_monitoring
|
|
|
|
async def configure_application_performance_monitoring(self):
|
|
"""
|
|
Configure application performance monitoring
|
|
"""
|
|
apm_config = {
|
|
'distributed_tracing': True,
|
|
'transaction_profiling': True,
|
|
'error_tracking': True,
|
|
'performance_profiling': True,
|
|
'dependency_mapping': True
|
|
}
|
|
|
|
# Configure application metrics
|
|
app_metrics = [
|
|
MonitoringMetric(
|
|
metric_id="app_response_time",
|
|
name="Application Response Time",
|
|
type=MetricType.HISTOGRAM,
|
|
monitoring_type=MonitoringType.APPLICATION,
|
|
description="Application response time distribution",
|
|
unit="milliseconds",
|
|
collection_interval=30,
|
|
retention_period=30,
|
|
thresholds={
|
|
'warning': 1000.0,
|
|
'critical': 5000.0
|
|
}
|
|
),
|
|
MonitoringMetric(
|
|
metric_id="app_throughput",
|
|
name="Application Throughput",
|
|
type=MetricType.COUNTER,
|
|
monitoring_type=MonitoringType.APPLICATION,
|
|
description="Application requests per second",
|
|
unit="requests/second",
|
|
collection_interval=30,
|
|
retention_period=30,
|
|
thresholds={
|
|
'warning': 100.0,
|
|
'critical': 50.0
|
|
}
|
|
),
|
|
MonitoringMetric(
|
|
metric_id="app_error_rate",
|
|
name="Application Error Rate",
|
|
type=MetricType.GAUGE,
|
|
monitoring_type=MonitoringType.APPLICATION,
|
|
description="Application error rate percentage",
|
|
unit="percent",
|
|
collection_interval=30,
|
|
retention_period=90,
|
|
thresholds={
|
|
'warning': 1.0,
|
|
'critical': 5.0
|
|
}
|
|
)
|
|
]
|
|
|
|
# Register application metrics
|
|
for metric in app_metrics:
|
|
await self.metric_repository.register_metric(metric)
|
|
|
|
apm_config['metrics_configured'] = len(app_metrics)
|
|
|
|
return apm_config
|
|
|
|
class MetricsCollector:
|
|
"""
|
|
Collects metrics from various sources
|
|
"""
|
|
|
|
def __init__(self, claude_code, config):
|
|
self.claude_code = claude_code
|
|
self.config = config
|
|
self.collection_tasks = {}
|
|
|
|
async def start_collection(self, metrics_configuration):
|
|
"""
|
|
Start metrics collection based on configuration
|
|
"""
|
|
collection_session = {
|
|
'session_id': generate_uuid(),
|
|
'start_time': datetime.utcnow(),
|
|
'metrics_configured': len(metrics_configuration),
|
|
'collection_tasks_started': 0,
|
|
'data_points_collected': 0
|
|
}
|
|
|
|
# Start collection tasks for each metric type
|
|
for metric_config in metrics_configuration:
|
|
if metric_config.monitoring_type == MonitoringType.INFRASTRUCTURE:
|
|
task = asyncio.create_task(
|
|
self.collect_infrastructure_metrics(metric_config)
|
|
)
|
|
elif metric_config.monitoring_type == MonitoringType.APPLICATION:
|
|
task = asyncio.create_task(
|
|
self.collect_application_metrics(metric_config)
|
|
)
|
|
else:
|
|
task = asyncio.create_task(
|
|
self.collect_generic_metrics(metric_config)
|
|
)
|
|
|
|
self.collection_tasks[metric_config.metric_id] = task
|
|
collection_session['collection_tasks_started'] += 1
|
|
|
|
return collection_session
|
|
|
|
async def collect_infrastructure_metrics(self, metric_config):
|
|
"""
|
|
Collect infrastructure metrics
|
|
"""
|
|
while True:
|
|
try:
|
|
# Collect system metrics based on metric type
|
|
if 'cpu' in metric_config.metric_id:
|
|
value = psutil.cpu_percent(interval=1)
|
|
elif 'memory' in metric_config.metric_id:
|
|
value = psutil.virtual_memory().percent
|
|
elif 'disk' in metric_config.metric_id:
|
|
value = psutil.disk_usage('/').percent
|
|
elif 'load' in metric_config.metric_id:
|
|
value = psutil.getloadavg()[0] if hasattr(psutil, 'getloadavg') else 0.0
|
|
else:
|
|
value = 0.0 # Default value
|
|
|
|
# Create metric data point
|
|
data_point = {
|
|
'metric_id': metric_config.metric_id,
|
|
'timestamp': datetime.utcnow(),
|
|
'value': value,
|
|
'labels': metric_config.labels
|
|
}
|
|
|
|
# Store metric data point
|
|
await self.store_metric_data_point(data_point)
|
|
|
|
# Wait for next collection interval
|
|
await asyncio.sleep(metric_config.collection_interval)
|
|
|
|
except Exception as e:
|
|
logging.error(f"Error collecting metric {metric_config.metric_id}: {e}")
|
|
await asyncio.sleep(metric_config.collection_interval)
|
|
|
|
async def store_metric_data_point(self, data_point):
|
|
"""
|
|
Store metric data point
|
|
"""
|
|
# In practice, this would store to a time-series database
|
|
# For now, we'll just log it
|
|
logging.info(f"Metric collected: {data_point}")
|
|
|
|
class AnomalyDetector:
|
|
"""
|
|
AI-powered anomaly detection for monitoring data
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.models = {}
|
|
self.scaler = StandardScaler()
|
|
|
|
async def detect_anomalies_batch(self, data_batch):
|
|
"""
|
|
Detect anomalies in a batch of monitoring data
|
|
"""
|
|
anomalies = []
|
|
|
|
try:
|
|
# Prepare data for anomaly detection
|
|
df = pd.DataFrame(data_batch)
|
|
|
|
if len(df) < 10: # Need minimum data points
|
|
return anomalies
|
|
|
|
# Extract numerical features
|
|
numerical_features = df.select_dtypes(include=[np.number]).columns
|
|
|
|
if len(numerical_features) == 0:
|
|
return anomalies
|
|
|
|
# Normalize data
|
|
normalized_data = self.scaler.fit_transform(df[numerical_features])
|
|
|
|
# Use Isolation Forest for anomaly detection
|
|
iso_forest = IsolationForest(contamination=0.1, random_state=42)
|
|
anomaly_labels = iso_forest.fit_predict(normalized_data)
|
|
|
|
# Identify anomalies
|
|
for i, label in enumerate(anomaly_labels):
|
|
if label == -1: # Anomaly detected
|
|
anomaly = {
|
|
'anomaly_id': generate_uuid(),
|
|
'data_point': data_batch[i],
|
|
'anomaly_score': iso_forest.score_samples([normalized_data[i]])[0],
|
|
'detection_time': datetime.utcnow(),
|
|
'features_affected': numerical_features.tolist()
|
|
}
|
|
anomalies.append(anomaly)
|
|
|
|
except Exception as e:
|
|
logging.error(f"Error in anomaly detection: {e}")
|
|
|
|
return anomalies
|
|
|
|
def generate_uuid():
|
|
"""Generate a UUID string"""
|
|
return str(uuid.uuid4())
|
|
|
|
# Additional classes would be implemented here:
|
|
# - LogManager
|
|
# - EventProcessor
|
|
# - DistributedTraceManager
|
|
# - RealTimeAnalyticsEngine
|
|
# - PredictiveAnalyticsEngine
|
|
# - BehavioralAnalyticsEngine
|
|
# - BusinessAnalyticsEngine
|
|
# - AlertManager
|
|
# - MonitoringAutomationEngine
|
|
# - AutomatedRemediationEngine
|
|
# - EscalationManager
|
|
# - ObservabilityPlatform
|
|
# - MonitoringDashboardService
|
|
# - VisualizationEngine
|
|
# - MonitoringReportingEngine
|
|
# - MonitoringMLEngine
|
|
# - AIOpsEngine
|
|
# - LogNLPProcessor
|
|
# - MetricRepository
|
|
# - AlertRepository
|
|
# - InsightRepository
|
|
# - MonitoringState
|
|
# - MonitoringDataPipeline
|
|
# - MonitoringIntegrationManager
|
|
# - MonitoringStorageManager
|
|
```
|
|
|
|
### Advanced Monitoring & Analytics Commands
|
|
|
|
```bash
|
|
# Infrastructure monitoring setup
|
|
bmad monitor infrastructure --setup --comprehensive --predictive
|
|
bmad monitor system --cpu --memory --disk --network --real-time
|
|
bmad monitor cloud --multi-cloud --auto-scaling --cost-optimization
|
|
|
|
# Application performance monitoring
|
|
bmad monitor application --apm --distributed-tracing --profiling
|
|
bmad monitor api --performance --usage-analytics --error-tracking
|
|
bmad monitor user-experience --real-user --synthetic --journey-analytics
|
|
|
|
# Business process monitoring
|
|
bmad monitor business --transactions --workflows --kpis
|
|
bmad monitor operations --efficiency --sla-compliance --process-analytics
|
|
bmad monitor customer --journey --satisfaction --behavior-analytics
|
|
|
|
# Security and compliance monitoring
|
|
bmad monitor security --events --threats --behavioral-analytics
|
|
bmad monitor compliance --continuous --regulatory --audit-trail
|
|
bmad monitor access --patterns --anomalies --privilege-escalation
|
|
|
|
# Real-time analytics and insights
|
|
bmad analytics real-time --streaming --event-correlation --anomaly-detection
|
|
bmad analytics predictive --capacity-planning --failure-prediction
|
|
bmad analytics behavioral --user-patterns --system-behavior --optimization
|
|
|
|
# AI-powered monitoring and AIOps
|
|
bmad monitor ai --anomaly-detection --root-cause-analysis --auto-remediation
|
|
bmad monitor ml --pattern-recognition --predictive-maintenance
|
|
bmad monitor nlp --log-analysis --alert-interpretation --insights
|
|
|
|
# Alerting and automation
|
|
bmad alert setup --intelligent --correlation --escalation
|
|
bmad alert automate --response --remediation --workflows
|
|
bmad alert optimize --noise-reduction --context-enrichment
|
|
|
|
# Dashboards and visualization
|
|
bmad monitor dashboard --create --real-time --executive --operational
|
|
bmad monitor visualize --interactive --drill-down --mobile-responsive
|
|
bmad monitor report --automated --stakeholder-specific --scheduled
|
|
|
|
# Data management and integration
|
|
bmad monitor data --pipeline --integration --retention --archival
|
|
bmad monitor integrate --tools --platforms --apis --webhooks
|
|
bmad monitor storage --time-series --optimization --compression
|
|
```
|
|
|
|
This Advanced Monitoring & Analytics module provides sophisticated enterprise-grade monitoring, observability, and analytics capabilities that enable comprehensive visibility, predictive insights, and intelligent automation across all systems, processes, and business operations with real-time analytics and AI-powered monitoring throughout the entire enterprise ecosystem. |