BMAD-METHOD/bmad-system/monitoring-analytics/advanced-monitoring-analyti...

40 KiB

Advanced Monitoring & Analytics

Enterprise-Scale Monitoring and Analytics Platform for Enhanced BMAD System

The Advanced Monitoring & Analytics module provides sophisticated enterprise-grade monitoring, observability, and analytics capabilities that enable comprehensive visibility, predictive insights, and intelligent automation across all systems, processes, and business operations with real-time analytics and AI-powered monitoring.

Advanced Monitoring & Analytics Architecture

Comprehensive Monitoring and Analytics Platform

advanced_monitoring_analytics:
  monitoring_domains:
    infrastructure_monitoring:
      - system_performance_monitoring: "Real-time system performance monitoring and alerting"
      - network_monitoring_and_analysis: "Network performance monitoring and traffic analysis"
      - storage_monitoring_and_optimization: "Storage performance monitoring and capacity planning"
      - cloud_infrastructure_monitoring: "Multi-cloud infrastructure monitoring and optimization"
      - container_and_kubernetes_monitoring: "Container orchestration monitoring and observability"
      
    application_monitoring:
      - application_performance_monitoring: "APM with distributed tracing and profiling"
      - user_experience_monitoring: "Real user monitoring and synthetic testing"
      - api_monitoring_and_analytics: "API performance monitoring and usage analytics"
      - microservices_observability: "Microservices monitoring and service mesh observability"
      - database_performance_monitoring: "Database performance monitoring and optimization"
      
    business_process_monitoring:
      - business_transaction_monitoring: "End-to-end business transaction monitoring"
      - workflow_performance_monitoring: "Workflow execution monitoring and optimization"
      - sla_and_kpi_monitoring: "SLA compliance and KPI performance monitoring"
      - customer_journey_analytics: "Customer journey monitoring and experience analytics"
      - operational_efficiency_monitoring: "Operational process efficiency monitoring"
      
    security_monitoring:
      - security_event_monitoring: "Real-time security event monitoring and correlation"
      - threat_detection_and_analysis: "Advanced threat detection and behavioral analysis"
      - compliance_monitoring: "Continuous compliance monitoring and reporting"
      - access_pattern_monitoring: "User access pattern monitoring and anomaly detection"
      - data_security_monitoring: "Data access monitoring and protection analytics"
      
    log_management_and_analysis:
      - centralized_log_aggregation: "Centralized log collection and aggregation"
      - log_parsing_and_enrichment: "Intelligent log parsing and data enrichment"
      - log_analytics_and_insights: "Advanced log analytics and pattern recognition"
      - audit_trail_management: "Comprehensive audit trail management and analysis"
      - log_retention_and_archival: "Intelligent log retention and archival strategies"
      
  analytics_capabilities:
    real_time_analytics:
      - streaming_data_processing: "Real-time streaming data processing and analysis"
      - event_correlation_and_analysis: "Real-time event correlation and impact analysis"
      - anomaly_detection_algorithms: "ML-powered anomaly detection and alerting"
      - threshold_based_alerting: "Intelligent threshold-based monitoring and alerting"
      - real_time_dashboard_updates: "Real-time dashboard updates and visualizations"
      
    predictive_analytics:
      - capacity_planning_predictions: "Predictive capacity planning and resource forecasting"
      - performance_degradation_prediction: "Performance degradation prediction and prevention"
      - failure_prediction_and_prevention: "System failure prediction and proactive prevention"
      - demand_forecasting: "Demand forecasting and resource optimization"
      - trend_analysis_and_projection: "Trend analysis and future projection modeling"
      
    behavioral_analytics:
      - user_behavior_analytics: "User behavior analysis and pattern recognition"
      - system_behavior_profiling: "System behavior profiling and deviation detection"
      - application_usage_analytics: "Application usage patterns and optimization insights"
      - resource_utilization_patterns: "Resource utilization pattern analysis and optimization"
      - performance_pattern_recognition: "Performance pattern recognition and correlation"
      
    business_analytics:
      - operational_intelligence: "Operational intelligence and business insights"
      - customer_analytics: "Customer behavior analytics and segmentation"
      - financial_performance_analytics: "Financial performance monitoring and analysis"
      - market_intelligence_integration: "Market intelligence integration and analysis"
      - competitive_analysis_monitoring: "Competitive landscape monitoring and analysis"
      
  observability_platform:
    distributed_tracing:
      - end_to_end_request_tracing: "End-to-end request tracing across microservices"
      - service_dependency_mapping: "Service dependency mapping and visualization"
      - performance_bottleneck_identification: "Performance bottleneck identification and analysis"
      - error_propagation_tracking: "Error propagation tracking and root cause analysis"
      - trace_sampling_and_optimization: "Intelligent trace sampling and storage optimization"
      
    metrics_collection_and_analysis:
      - custom_metrics_definition: "Custom business and technical metrics definition"
      - metrics_aggregation_and_rollup: "Metrics aggregation and time-series rollup"
      - multi_dimensional_metrics: "Multi-dimensional metrics collection and analysis"
      - metrics_correlation_analysis: "Cross-metrics correlation and relationship analysis"
      - metrics_based_alerting: "Metrics-based intelligent alerting and escalation"
      
    event_driven_monitoring:
      - event_stream_processing: "Real-time event stream processing and analysis"
      - complex_event_processing: "Complex event processing and pattern matching"
      - event_correlation_engines: "Multi-source event correlation and analysis"
      - event_driven_automation: "Event-driven automation and response systems"
      - event_sourcing_and_replay: "Event sourcing and historical event replay"
      
    visualization_and_dashboards:
      - interactive_dashboard_creation: "Interactive dashboard creation and customization"
      - real_time_data_visualization: "Real-time data visualization and updates"
      - drill_down_and_exploration: "Multi-level drill-down and data exploration"
      - mobile_responsive_dashboards: "Mobile-responsive dashboard interfaces"
      - collaborative_dashboard_sharing: "Collaborative dashboard sharing and annotation"
      
  automation_and_intelligence:
    intelligent_alerting:
      - smart_alert_correlation: "Smart alert correlation and noise reduction"
      - contextual_alert_enrichment: "Contextual alert enrichment and prioritization"
      - predictive_alerting: "Predictive alerting based on trend analysis"
      - escalation_and_routing: "Intelligent alert escalation and routing"
      - alert_feedback_learning: "Alert feedback learning and optimization"
      
    automated_remediation:
      - self_healing_systems: "Self-healing system automation and recovery"
      - automated_scaling_responses: "Automated scaling responses to demand changes"
      - performance_optimization_automation: "Automated performance optimization actions"
      - security_response_automation: "Automated security incident response"
      - workflow_automation_triggers: "Monitoring-driven workflow automation triggers"
      
    machine_learning_integration:
      - anomaly_detection_models: "ML-powered anomaly detection and classification"
      - predictive_maintenance_models: "Predictive maintenance and lifecycle management"
      - optimization_recommendation_engines: "ML-driven optimization recommendation engines"
      - natural_language_processing: "NLP for log analysis and alert interpretation"
      - reinforcement_learning_optimization: "RL-based system optimization and tuning"
      
    aiops_capabilities:
      - intelligent_incident_management: "AI-powered incident management and resolution"
      - root_cause_analysis_automation: "Automated root cause analysis and diagnosis"
      - performance_optimization_ai: "AI-driven performance optimization recommendations"
      - capacity_planning_ai: "AI-powered capacity planning and resource optimization"
      - predictive_analytics_ai: "AI-enhanced predictive analytics and forecasting"

Advanced Monitoring & Analytics Implementation

import asyncio
import pandas as pd
import numpy as np
from typing import Dict, List, Any, Optional, Tuple, Union
from dataclasses import dataclass, field
from enum import Enum
from datetime import datetime, timedelta
import json
import uuid
from collections import defaultdict, deque
import logging
from abc import ABC, abstractmethod
import time
import threading
import multiprocessing
from concurrent.futures import ThreadPoolExecutor
import psutil
import networkx as nx
from sklearn.ensemble import IsolationForest
from sklearn.cluster import DBSCAN
from sklearn.preprocessing import StandardScaler
import plotly.graph_objects as go
import plotly.express as px
from scipy import stats
import warnings
warnings.filterwarnings('ignore')

class MonitoringType(Enum):
    INFRASTRUCTURE = "infrastructure"
    APPLICATION = "application"
    BUSINESS = "business"
    SECURITY = "security"
    NETWORK = "network"
    USER_EXPERIENCE = "user_experience"

class AlertSeverity(Enum):
    CRITICAL = "critical"
    HIGH = "high"
    MEDIUM = "medium"
    LOW = "low"
    INFO = "info"

class MetricType(Enum):
    COUNTER = "counter"
    GAUGE = "gauge"
    HISTOGRAM = "histogram"
    SUMMARY = "summary"
    TIMER = "timer"

class AnalyticsType(Enum):
    DESCRIPTIVE = "descriptive"
    DIAGNOSTIC = "diagnostic"
    PREDICTIVE = "predictive"
    PRESCRIPTIVE = "prescriptive"

@dataclass
class MonitoringMetric:
    """
    Represents a monitoring metric with metadata and configuration
    """
    metric_id: str
    name: str
    type: MetricType
    monitoring_type: MonitoringType
    description: str
    unit: str
    collection_interval: int  # seconds
    retention_period: int  # days
    labels: Dict[str, str] = field(default_factory=dict)
    thresholds: Dict[str, float] = field(default_factory=dict)
    aggregation_rules: List[str] = field(default_factory=list)
    alerting_enabled: bool = True

@dataclass
class MonitoringAlert:
    """
    Represents a monitoring alert with context and severity
    """
    alert_id: str
    title: str
    description: str
    severity: AlertSeverity
    monitoring_type: MonitoringType
    triggered_time: datetime
    source_metric: str
    current_value: float
    threshold_value: float
    labels: Dict[str, str] = field(default_factory=dict)
    context: Dict[str, Any] = field(default_factory=dict)
    escalation_rules: List[Dict[str, Any]] = field(default_factory=list)
    resolution_time: Optional[datetime] = None
    acknowledged: bool = False

@dataclass
class AnalyticsInsight:
    """
    Represents an analytics insight generated from monitoring data
    """
    insight_id: str
    title: str
    description: str
    analytics_type: AnalyticsType
    confidence_score: float
    impact_level: str  # high, medium, low
    time_horizon: str  # immediate, short_term, medium_term, long_term
    affected_systems: List[str] = field(default_factory=list)
    recommendations: List[str] = field(default_factory=list)
    supporting_data: Dict[str, Any] = field(default_factory=dict)
    created_time: datetime = field(default_factory=datetime.utcnow)

class AdvancedMonitoringAnalytics:
    """
    Enterprise-scale monitoring and analytics platform
    """
    
    def __init__(self, claude_code_interface, config=None):
        self.claude_code = claude_code_interface
        self.config = config or {
            'real_time_processing': True,
            'predictive_analytics': True,
            'anomaly_detection': True,
            'automated_remediation': True,
            'alert_correlation': True,
            'data_retention_days': 365,
            'metrics_collection_interval': 60,
            'alert_evaluation_interval': 30,
            'ml_model_training_interval_hours': 24
        }
        
        # Core monitoring components
        self.metrics_collector = MetricsCollector(self.claude_code, self.config)
        self.log_manager = LogManager(self.config)
        self.event_processor = EventProcessor(self.config)
        self.trace_manager = DistributedTraceManager(self.config)
        
        # Analytics engines
        self.real_time_analytics = RealTimeAnalyticsEngine(self.config)
        self.predictive_analytics = PredictiveAnalyticsEngine(self.config)
        self.behavioral_analytics = BehavioralAnalyticsEngine(self.config)
        self.business_analytics = BusinessAnalyticsEngine(self.config)
        
        # Alerting and automation
        self.alert_manager = AlertManager(self.config)
        self.automation_engine = MonitoringAutomationEngine(self.config)
        self.remediation_engine = AutomatedRemediationEngine(self.config)
        self.escalation_manager = EscalationManager(self.config)
        
        # Observability platform
        self.observability_platform = ObservabilityPlatform(self.config)
        self.dashboard_service = MonitoringDashboardService(self.config)
        self.visualization_engine = VisualizationEngine(self.config)
        self.reporting_engine = MonitoringReportingEngine(self.config)
        
        # AI and ML components
        self.anomaly_detector = AnomalyDetector(self.config)
        self.ml_engine = MonitoringMLEngine(self.config)
        self.aiops_engine = AIOpsEngine(self.config)
        self.nlp_processor = LogNLPProcessor(self.config)
        
        # State management
        self.metric_repository = MetricRepository()
        self.alert_repository = AlertRepository()
        self.insight_repository = InsightRepository()
        self.monitoring_state = MonitoringState()
        
        # Integration and data management
        self.data_pipeline = MonitoringDataPipeline(self.config)
        self.integration_manager = MonitoringIntegrationManager(self.config)
        self.storage_manager = MonitoringStorageManager(self.config)
        
    async def setup_comprehensive_monitoring(self, monitoring_scope, requirements):
        """
        Setup comprehensive monitoring across all domains
        """
        monitoring_setup = {
            'setup_id': generate_uuid(),
            'start_time': datetime.utcnow(),
            'monitoring_scope': monitoring_scope,
            'requirements': requirements,
            'infrastructure_monitoring': {},
            'application_monitoring': {},
            'business_monitoring': {},
            'security_monitoring': {},
            'analytics_configuration': {}
        }
        
        try:
            # Analyze monitoring requirements
            monitoring_analysis = await self.analyze_monitoring_requirements(
                monitoring_scope,
                requirements
            )
            monitoring_setup['monitoring_analysis'] = monitoring_analysis
            
            # Setup infrastructure monitoring
            infrastructure_monitoring = await self.setup_infrastructure_monitoring(
                monitoring_analysis
            )
            monitoring_setup['infrastructure_monitoring'] = infrastructure_monitoring
            
            # Setup application monitoring
            application_monitoring = await self.setup_application_monitoring(
                monitoring_analysis
            )
            monitoring_setup['application_monitoring'] = application_monitoring
            
            # Setup business process monitoring
            business_monitoring = await self.setup_business_monitoring(
                monitoring_analysis
            )
            monitoring_setup['business_monitoring'] = business_monitoring
            
            # Setup security monitoring
            security_monitoring = await self.setup_security_monitoring(
                monitoring_analysis
            )
            monitoring_setup['security_monitoring'] = security_monitoring
            
            # Configure analytics and AI
            analytics_configuration = await self.configure_monitoring_analytics(
                monitoring_analysis
            )
            monitoring_setup['analytics_configuration'] = analytics_configuration
            
            # Setup alerting and automation
            alerting_setup = await self.setup_alerting_and_automation(
                monitoring_setup
            )
            monitoring_setup['alerting_setup'] = alerting_setup
            
            # Configure dashboards and visualization
            dashboard_setup = await self.setup_monitoring_dashboards(
                monitoring_setup
            )
            monitoring_setup['dashboard_setup'] = dashboard_setup
            
            # Initialize data pipeline
            data_pipeline_setup = await self.initialize_monitoring_data_pipeline(
                monitoring_setup
            )
            monitoring_setup['data_pipeline_setup'] = data_pipeline_setup
            
        except Exception as e:
            monitoring_setup['error'] = str(e)
        
        finally:
            monitoring_setup['end_time'] = datetime.utcnow()
            monitoring_setup['setup_duration'] = (
                monitoring_setup['end_time'] - monitoring_setup['start_time']
            ).total_seconds()
        
        return monitoring_setup
    
    async def analyze_monitoring_requirements(self, monitoring_scope, requirements):
        """
        Analyze monitoring requirements and scope
        """
        monitoring_analysis = {
            'infrastructure_requirements': {},
            'application_requirements': {},
            'business_requirements': {},
            'compliance_requirements': {},
            'performance_requirements': {},
            'scalability_requirements': {},
            'integration_requirements': {}
        }
        
        # Analyze infrastructure requirements
        infrastructure_requirements = await self.analyze_infrastructure_monitoring_requirements(
            monitoring_scope,
            requirements
        )
        monitoring_analysis['infrastructure_requirements'] = infrastructure_requirements
        
        # Analyze application requirements
        application_requirements = await self.analyze_application_monitoring_requirements(
            monitoring_scope,
            requirements
        )
        monitoring_analysis['application_requirements'] = application_requirements
        
        # Analyze business requirements
        business_requirements = await self.analyze_business_monitoring_requirements(
            monitoring_scope,
            requirements
        )
        monitoring_analysis['business_requirements'] = business_requirements
        
        # Analyze compliance requirements
        compliance_requirements = await self.analyze_compliance_monitoring_requirements(
            requirements
        )
        monitoring_analysis['compliance_requirements'] = compliance_requirements
        
        return monitoring_analysis
    
    async def perform_real_time_analytics(self, data_stream):
        """
        Perform real-time analytics on streaming monitoring data
        """
        analytics_session = {
            'session_id': generate_uuid(),
            'start_time': datetime.utcnow(),
            'data_points_processed': 0,
            'anomalies_detected': [],
            'patterns_identified': [],
            'alerts_generated': [],
            'insights_generated': []
        }
        
        try:
            # Process data stream in real-time
            async for data_batch in data_stream:
                # Update data points counter
                analytics_session['data_points_processed'] += len(data_batch)
                
                # Perform anomaly detection
                anomalies = await self.anomaly_detector.detect_anomalies_batch(data_batch)
                if anomalies:
                    analytics_session['anomalies_detected'].extend(anomalies)
                    
                    # Generate alerts for anomalies
                    anomaly_alerts = await self.generate_anomaly_alerts(anomalies)
                    analytics_session['alerts_generated'].extend(anomaly_alerts)
                
                # Identify patterns
                patterns = await self.real_time_analytics.identify_patterns(data_batch)
                analytics_session['patterns_identified'].extend(patterns)
                
                # Generate real-time insights
                insights = await self.generate_real_time_insights(
                    data_batch,
                    anomalies,
                    patterns
                )
                analytics_session['insights_generated'].extend(insights)
                
                # Update monitoring state
                await self.monitoring_state.update_from_batch(data_batch)
                
                # Process alerts and automation
                for alert in anomaly_alerts:
                    await self.alert_manager.process_alert(alert)
                
        except Exception as e:
            analytics_session['error'] = str(e)
        
        finally:
            analytics_session['end_time'] = datetime.utcnow()
            analytics_session['processing_duration'] = (
                analytics_session['end_time'] - analytics_session['start_time']
            ).total_seconds()
        
        return analytics_session
    
    async def generate_predictive_insights(self, historical_data, prediction_horizon="7d"):
        """
        Generate predictive insights from historical monitoring data
        """
        prediction_session = {
            'session_id': generate_uuid(),
            'start_time': datetime.utcnow(),
            'prediction_horizon': prediction_horizon,
            'data_analyzed': len(historical_data),
            'predictions_generated': [],
            'risk_assessments': [],
            'recommendations': []
        }
        
        try:
            # Prepare data for prediction
            prepared_data = await self.predictive_analytics.prepare_prediction_data(
                historical_data
            )
            
            # Generate capacity predictions
            capacity_predictions = await self.predictive_analytics.predict_capacity_requirements(
                prepared_data,
                prediction_horizon
            )
            prediction_session['predictions_generated'].extend(capacity_predictions)
            
            # Generate performance predictions
            performance_predictions = await self.predictive_analytics.predict_performance_trends(
                prepared_data,
                prediction_horizon
            )
            prediction_session['predictions_generated'].extend(performance_predictions)
            
            # Generate failure risk predictions
            failure_predictions = await self.predictive_analytics.predict_failure_risks(
                prepared_data,
                prediction_horizon
            )
            prediction_session['predictions_generated'].extend(failure_predictions)
            
            # Assess risks based on predictions
            risk_assessments = await self.assess_prediction_risks(
                prediction_session['predictions_generated']
            )
            prediction_session['risk_assessments'] = risk_assessments
            
            # Generate recommendations
            recommendations = await self.generate_predictive_recommendations(
                prediction_session['predictions_generated'],
                risk_assessments
            )
            prediction_session['recommendations'] = recommendations
            
            # Create predictive alerts
            predictive_alerts = await self.create_predictive_alerts(
                prediction_session['predictions_generated'],
                risk_assessments
            )
            prediction_session['predictive_alerts'] = predictive_alerts
            
        except Exception as e:
            prediction_session['error'] = str(e)
        
        finally:
            prediction_session['end_time'] = datetime.utcnow()
            prediction_session['prediction_duration'] = (
                prediction_session['end_time'] - prediction_session['start_time']
            ).total_seconds()
        
        return prediction_session
    
    async def setup_infrastructure_monitoring(self, monitoring_analysis):
        """
        Setup comprehensive infrastructure monitoring
        """
        infrastructure_monitoring = {
            'system_monitoring': {},
            'network_monitoring': {},
            'storage_monitoring': {},
            'cloud_monitoring': {},
            'container_monitoring': {}
        }
        
        # Setup system performance monitoring
        system_monitoring = await self.setup_system_monitoring()
        infrastructure_monitoring['system_monitoring'] = system_monitoring
        
        # Setup network monitoring
        network_monitoring = await self.setup_network_monitoring()
        infrastructure_monitoring['network_monitoring'] = network_monitoring
        
        # Setup storage monitoring
        storage_monitoring = await self.setup_storage_monitoring()
        infrastructure_monitoring['storage_monitoring'] = storage_monitoring
        
        # Setup cloud monitoring
        cloud_monitoring = await self.setup_cloud_monitoring()
        infrastructure_monitoring['cloud_monitoring'] = cloud_monitoring
        
        return infrastructure_monitoring
    
    async def setup_system_monitoring(self):
        """
        Setup system performance monitoring
        """
        system_monitoring = {
            'cpu_monitoring': True,
            'memory_monitoring': True,
            'disk_monitoring': True,
            'process_monitoring': True,
            'service_monitoring': True
        }
        
        # Configure CPU monitoring
        cpu_metrics = [
            MonitoringMetric(
                metric_id="system_cpu_usage",
                name="CPU Usage Percentage",
                type=MetricType.GAUGE,
                monitoring_type=MonitoringType.INFRASTRUCTURE,
                description="System CPU utilization percentage",
                unit="percent",
                collection_interval=60,
                retention_period=90,
                thresholds={
                    'warning': 70.0,
                    'critical': 90.0
                }
            ),
            MonitoringMetric(
                metric_id="system_load_average",
                name="System Load Average",
                type=MetricType.GAUGE,
                monitoring_type=MonitoringType.INFRASTRUCTURE,
                description="System load average (1, 5, 15 minutes)",
                unit="load",
                collection_interval=60,
                retention_period=90,
                thresholds={
                    'warning': 2.0,
                    'critical': 4.0
                }
            )
        ]
        
        # Configure memory monitoring
        memory_metrics = [
            MonitoringMetric(
                metric_id="system_memory_usage",
                name="Memory Usage Percentage",
                type=MetricType.GAUGE,
                monitoring_type=MonitoringType.INFRASTRUCTURE,
                description="System memory utilization percentage",
                unit="percent",
                collection_interval=60,
                retention_period=90,
                thresholds={
                    'warning': 80.0,
                    'critical': 95.0
                }
            )
        ]
        
        # Register metrics
        for metric in cpu_metrics + memory_metrics:
            await self.metric_repository.register_metric(metric)
        
        system_monitoring['metrics_configured'] = len(cpu_metrics + memory_metrics)
        
        return system_monitoring
    
    async def setup_application_monitoring(self, monitoring_analysis):
        """
        Setup comprehensive application monitoring
        """
        application_monitoring = {
            'apm_configuration': {},
            'user_experience_monitoring': {},
            'api_monitoring': {},
            'database_monitoring': {},
            'microservices_monitoring': {}
        }
        
        # Configure APM
        apm_configuration = await self.configure_application_performance_monitoring()
        application_monitoring['apm_configuration'] = apm_configuration
        
        # Configure user experience monitoring
        ux_monitoring = await self.configure_user_experience_monitoring()
        application_monitoring['user_experience_monitoring'] = ux_monitoring
        
        # Configure API monitoring
        api_monitoring = await self.configure_api_monitoring()
        application_monitoring['api_monitoring'] = api_monitoring
        
        return application_monitoring
    
    async def configure_application_performance_monitoring(self):
        """
        Configure application performance monitoring
        """
        apm_config = {
            'distributed_tracing': True,
            'transaction_profiling': True,
            'error_tracking': True,
            'performance_profiling': True,
            'dependency_mapping': True
        }
        
        # Configure application metrics
        app_metrics = [
            MonitoringMetric(
                metric_id="app_response_time",
                name="Application Response Time",
                type=MetricType.HISTOGRAM,
                monitoring_type=MonitoringType.APPLICATION,
                description="Application response time distribution",
                unit="milliseconds",
                collection_interval=30,
                retention_period=30,
                thresholds={
                    'warning': 1000.0,
                    'critical': 5000.0
                }
            ),
            MonitoringMetric(
                metric_id="app_throughput",
                name="Application Throughput",
                type=MetricType.COUNTER,
                monitoring_type=MonitoringType.APPLICATION,
                description="Application requests per second",
                unit="requests/second",
                collection_interval=30,
                retention_period=30,
                thresholds={
                    'warning': 100.0,
                    'critical': 50.0
                }
            ),
            MonitoringMetric(
                metric_id="app_error_rate",
                name="Application Error Rate",
                type=MetricType.GAUGE,
                monitoring_type=MonitoringType.APPLICATION,
                description="Application error rate percentage",
                unit="percent",
                collection_interval=30,
                retention_period=90,
                thresholds={
                    'warning': 1.0,
                    'critical': 5.0
                }
            )
        ]
        
        # Register application metrics
        for metric in app_metrics:
            await self.metric_repository.register_metric(metric)
        
        apm_config['metrics_configured'] = len(app_metrics)
        
        return apm_config

class MetricsCollector:
    """
    Collects metrics from various sources
    """
    
    def __init__(self, claude_code, config):
        self.claude_code = claude_code
        self.config = config
        self.collection_tasks = {}
        
    async def start_collection(self, metrics_configuration):
        """
        Start metrics collection based on configuration
        """
        collection_session = {
            'session_id': generate_uuid(),
            'start_time': datetime.utcnow(),
            'metrics_configured': len(metrics_configuration),
            'collection_tasks_started': 0,
            'data_points_collected': 0
        }
        
        # Start collection tasks for each metric type
        for metric_config in metrics_configuration:
            if metric_config.monitoring_type == MonitoringType.INFRASTRUCTURE:
                task = asyncio.create_task(
                    self.collect_infrastructure_metrics(metric_config)
                )
            elif metric_config.monitoring_type == MonitoringType.APPLICATION:
                task = asyncio.create_task(
                    self.collect_application_metrics(metric_config)
                )
            else:
                task = asyncio.create_task(
                    self.collect_generic_metrics(metric_config)
                )
            
            self.collection_tasks[metric_config.metric_id] = task
            collection_session['collection_tasks_started'] += 1
        
        return collection_session
    
    async def collect_infrastructure_metrics(self, metric_config):
        """
        Collect infrastructure metrics
        """
        while True:
            try:
                # Collect system metrics based on metric type
                if 'cpu' in metric_config.metric_id:
                    value = psutil.cpu_percent(interval=1)
                elif 'memory' in metric_config.metric_id:
                    value = psutil.virtual_memory().percent
                elif 'disk' in metric_config.metric_id:
                    value = psutil.disk_usage('/').percent
                elif 'load' in metric_config.metric_id:
                    value = psutil.getloadavg()[0] if hasattr(psutil, 'getloadavg') else 0.0
                else:
                    value = 0.0  # Default value
                
                # Create metric data point
                data_point = {
                    'metric_id': metric_config.metric_id,
                    'timestamp': datetime.utcnow(),
                    'value': value,
                    'labels': metric_config.labels
                }
                
                # Store metric data point
                await self.store_metric_data_point(data_point)
                
                # Wait for next collection interval
                await asyncio.sleep(metric_config.collection_interval)
                
            except Exception as e:
                logging.error(f"Error collecting metric {metric_config.metric_id}: {e}")
                await asyncio.sleep(metric_config.collection_interval)
    
    async def store_metric_data_point(self, data_point):
        """
        Store metric data point
        """
        # In practice, this would store to a time-series database
        # For now, we'll just log it
        logging.info(f"Metric collected: {data_point}")

class AnomalyDetector:
    """
    AI-powered anomaly detection for monitoring data
    """
    
    def __init__(self, config):
        self.config = config
        self.models = {}
        self.scaler = StandardScaler()
        
    async def detect_anomalies_batch(self, data_batch):
        """
        Detect anomalies in a batch of monitoring data
        """
        anomalies = []
        
        try:
            # Prepare data for anomaly detection
            df = pd.DataFrame(data_batch)
            
            if len(df) < 10:  # Need minimum data points
                return anomalies
            
            # Extract numerical features
            numerical_features = df.select_dtypes(include=[np.number]).columns
            
            if len(numerical_features) == 0:
                return anomalies
            
            # Normalize data
            normalized_data = self.scaler.fit_transform(df[numerical_features])
            
            # Use Isolation Forest for anomaly detection
            iso_forest = IsolationForest(contamination=0.1, random_state=42)
            anomaly_labels = iso_forest.fit_predict(normalized_data)
            
            # Identify anomalies
            for i, label in enumerate(anomaly_labels):
                if label == -1:  # Anomaly detected
                    anomaly = {
                        'anomaly_id': generate_uuid(),
                        'data_point': data_batch[i],
                        'anomaly_score': iso_forest.score_samples([normalized_data[i]])[0],
                        'detection_time': datetime.utcnow(),
                        'features_affected': numerical_features.tolist()
                    }
                    anomalies.append(anomaly)
            
        except Exception as e:
            logging.error(f"Error in anomaly detection: {e}")
        
        return anomalies

def generate_uuid():
    """Generate a UUID string"""
    return str(uuid.uuid4())

# Additional classes would be implemented here:
# - LogManager
# - EventProcessor
# - DistributedTraceManager
# - RealTimeAnalyticsEngine
# - PredictiveAnalyticsEngine
# - BehavioralAnalyticsEngine
# - BusinessAnalyticsEngine
# - AlertManager
# - MonitoringAutomationEngine
# - AutomatedRemediationEngine
# - EscalationManager
# - ObservabilityPlatform
# - MonitoringDashboardService
# - VisualizationEngine
# - MonitoringReportingEngine
# - MonitoringMLEngine
# - AIOpsEngine
# - LogNLPProcessor
# - MetricRepository
# - AlertRepository
# - InsightRepository
# - MonitoringState
# - MonitoringDataPipeline
# - MonitoringIntegrationManager
# - MonitoringStorageManager

Advanced Monitoring & Analytics Commands

# Infrastructure monitoring setup
bmad monitor infrastructure --setup --comprehensive --predictive
bmad monitor system --cpu --memory --disk --network --real-time
bmad monitor cloud --multi-cloud --auto-scaling --cost-optimization

# Application performance monitoring
bmad monitor application --apm --distributed-tracing --profiling
bmad monitor api --performance --usage-analytics --error-tracking
bmad monitor user-experience --real-user --synthetic --journey-analytics

# Business process monitoring
bmad monitor business --transactions --workflows --kpis
bmad monitor operations --efficiency --sla-compliance --process-analytics
bmad monitor customer --journey --satisfaction --behavior-analytics

# Security and compliance monitoring
bmad monitor security --events --threats --behavioral-analytics
bmad monitor compliance --continuous --regulatory --audit-trail
bmad monitor access --patterns --anomalies --privilege-escalation

# Real-time analytics and insights
bmad analytics real-time --streaming --event-correlation --anomaly-detection
bmad analytics predictive --capacity-planning --failure-prediction
bmad analytics behavioral --user-patterns --system-behavior --optimization

# AI-powered monitoring and AIOps
bmad monitor ai --anomaly-detection --root-cause-analysis --auto-remediation
bmad monitor ml --pattern-recognition --predictive-maintenance
bmad monitor nlp --log-analysis --alert-interpretation --insights

# Alerting and automation
bmad alert setup --intelligent --correlation --escalation
bmad alert automate --response --remediation --workflows
bmad alert optimize --noise-reduction --context-enrichment

# Dashboards and visualization
bmad monitor dashboard --create --real-time --executive --operational
bmad monitor visualize --interactive --drill-down --mobile-responsive
bmad monitor report --automated --stakeholder-specific --scheduled

# Data management and integration
bmad monitor data --pipeline --integration --retention --archival
bmad monitor integrate --tools --platforms --apis --webhooks
bmad monitor storage --time-series --optimization --compression

This Advanced Monitoring & Analytics module provides sophisticated enterprise-grade monitoring, observability, and analytics capabilities that enable comprehensive visibility, predictive insights, and intelligent automation across all systems, processes, and business operations with real-time analytics and AI-powered monitoring throughout the entire enterprise ecosystem.