BMAD-METHOD/bmad-system/bmad-orchestrator-enhanced.md

16 KiB

BMAD Orchestrator Enhanced

Master Coordination System for Intelligence-Enhanced BMAD

The Enhanced BMAD Orchestrator provides centralized coordination of the entire intelligence-enhanced BMAD system, seamlessly integrating with Claude Code to provide comprehensive AI-driven development assistance.

System Architecture Overview

Enhanced BMAD System Components

bmad_enhanced_system:
  core_intelligence:
    - bmad_intelligence_core: "Central AI coordinator and decision synthesis"
    - pattern_intelligence: "Advanced pattern recognition and application"
    - decision_engine: "Multi-criteria decision making system"
    
  memory_systems:
    - project_memory_manager: "Persistent project memory and learning"
    - solution_repository: "Reusable solution pattern storage"
    - error_prevention_system: "Mistake tracking and prevention"
    
  communication_framework:
    - agent_messenger: "Inter-persona communication system"
    - context_synchronizer: "Real-time context sharing"
    
  automation_systems:
    - dynamic_rule_engine: "Real-time rule generation and management"
    - bmad_boot_loader: "Intelligent system initialization"
    
  integration_layer:
    - persona_intelligence_bridge: "Persona-intelligence integration"
    - claude_code_integration: "Native Claude Code tool enhancement"
    
  existing_bmad_components:
    - personas: "Enhanced with intelligence capabilities"
    - tasks: "Augmented with intelligent execution"
    - templates: "Intelligent template selection and adaptation"
    - checklists: "Dynamic, context-aware validation"

Master Orchestration Flow

async def orchestrate_enhanced_bmad_session(user_request, project_context):
    """
    Master orchestration of enhanced BMAD system for Claude Code
    """
    # Phase 1: System Initialization
    initialization_result = await initialize_enhanced_bmad(project_context)
    
    if not initialization_result.success:
        return await handle_initialization_failure(initialization_result)
    
    # Phase 2: Request Analysis and Planning
    request_analysis = await analyze_user_request_intelligently(
        user_request,
        project_context,
        initialization_result.active_systems
    )
    
    # Phase 3: Optimal Strategy Selection
    execution_strategy = await select_optimal_execution_strategy(
        request_analysis,
        initialization_result.available_capabilities
    )
    
    # Phase 4: Intelligent Execution
    execution_result = await execute_with_intelligence_coordination(
        execution_strategy,
        initialization_result.active_systems
    )
    
    # Phase 5: Learning and Memory Update
    learning_result = await update_system_learning(
        user_request,
        execution_result,
        project_context
    )
    
    return {
        'execution_result': execution_result,
        'learning_applied': learning_result,
        'system_state': get_enhanced_system_state(),
        'recommendations': generate_next_step_recommendations(execution_result)
    }

async def initialize_enhanced_bmad(project_context):
    """
    Initialize the complete enhanced BMAD system
    """
    initialization_sequence = {
        'boot_system': await execute_intelligent_boot(project_context),
        'intelligence_core': await initialize_intelligence_systems(),
        'memory_systems': await initialize_memory_systems(project_context),
        'persona_integration': await initialize_persona_intelligence_integration(project_context),
        'rule_systems': await initialize_dynamic_rule_systems(project_context),
        'communication': await initialize_communication_systems()
    }
    
    # Validate all systems are operational
    system_validation = await validate_system_integration(initialization_sequence)
    
    return {
        'success': system_validation.all_systems_operational,
        'active_systems': initialization_sequence,
        'available_capabilities': extract_available_capabilities(initialization_sequence),
        'system_health': system_validation.health_report
    }

Intelligent Request Processing

Advanced Request Analysis

async def analyze_user_request_intelligently(user_request, project_context, active_systems):
    """
    Intelligently analyze user request using all available intelligence systems
    """
    # Parse request using pattern intelligence
    request_patterns = await active_systems['intelligence_core']['pattern_intelligence'].analyze_request(
        user_request
    )
    
    # Search for similar past requests in memory
    similar_experiences = await active_systems['memory_systems']['project_memory'].find_similar_requests(
        user_request,
        project_context
    )
    
    # Classify request type and complexity
    request_classification = await classify_request_comprehensively(
        user_request,
        request_patterns,
        similar_experiences
    )
    
    # Identify required personas and capabilities
    required_capabilities = await identify_required_capabilities(
        request_classification,
        project_context,
        active_systems
    )
    
    # Assess potential risks and challenges
    risk_assessment = await assess_request_risks(
        request_classification,
        similar_experiences,
        active_systems['memory_systems']['error_prevention']
    )
    
    return {
        'original_request': user_request,
        'request_patterns': request_patterns,
        'classification': request_classification,
        'similar_experiences': similar_experiences,
        'required_capabilities': required_capabilities,
        'risk_assessment': risk_assessment,
        'complexity_score': calculate_complexity_score(request_classification, risk_assessment)
    }

async def select_optimal_execution_strategy(request_analysis, available_capabilities):
    """
    Select the optimal execution strategy based on intelligent analysis
    """
    # Generate potential execution strategies
    strategy_options = await generate_execution_strategies(
        request_analysis,
        available_capabilities
    )
    
    # Evaluate each strategy using decision engine
    strategy_evaluations = []
    for strategy in strategy_options:
        evaluation = await evaluate_execution_strategy(
            strategy,
            request_analysis,
            available_capabilities
        )
        strategy_evaluations.append({
            'strategy': strategy,
            'evaluation': evaluation
        })
    
    # Select optimal strategy
    optimal_strategy = select_best_strategy(strategy_evaluations)
    
    # Enhance strategy with intelligence insights
    enhanced_strategy = await enhance_strategy_with_intelligence(
        optimal_strategy,
        request_analysis,
        available_capabilities
    )
    
    return enhanced_strategy

Coordinated Execution Framework

Multi-Persona Intelligence Coordination

async def execute_with_intelligence_coordination(execution_strategy, active_systems):
    """
    Execute strategy with coordinated intelligence support
    """
    execution_session = {
        'session_id': generate_uuid(),
        'strategy': execution_strategy,
        'execution_status': {},
        'intelligence_insights': {},
        'persona_coordination': {},
        'real_time_adaptations': []
    }
    
    # Initialize execution monitoring
    execution_monitor = await initialize_execution_monitoring(execution_strategy)
    
    # Execute strategy phases with intelligence coordination
    for phase in execution_strategy['phases']:
        phase_result = await execute_phase_with_intelligence(
            phase,
            execution_session,
            active_systems
        )
        
        execution_session['execution_status'][phase['id']] = phase_result
        
        # Real-time intelligence analysis
        intelligence_analysis = await analyze_phase_execution_intelligence(
            phase_result,
            execution_session,
            active_systems
        )
        
        execution_session['intelligence_insights'][phase['id']] = intelligence_analysis
        
        # Adaptive strategy modification if needed
        if intelligence_analysis.suggests_adaptation:
            adaptation = await generate_strategy_adaptation(
                intelligence_analysis,
                execution_session,
                active_systems
            )
            
            execution_session['real_time_adaptations'].append(adaptation)
            
            # Apply adaptation to remaining phases
            execution_strategy = await apply_strategy_adaptation(
                execution_strategy,
                adaptation
            )
    
    # Finalize execution with intelligence validation
    final_validation = await validate_execution_with_intelligence(
        execution_session,
        active_systems
    )
    
    return {
        'execution_session': execution_session,
        'final_validation': final_validation,
        'intelligence_contributions': extract_intelligence_contributions(execution_session),
        'outcomes_achieved': final_validation.outcomes_achieved
    }

async def execute_phase_with_intelligence(phase, execution_session, active_systems):
    """
    Execute a single phase with full intelligence support
    """
    # Prepare phase context with intelligence
    phase_context = await prepare_intelligent_phase_context(
        phase,
        execution_session,
        active_systems
    )
    
    # Coordinate required personas with intelligence enhancement
    persona_coordination = await coordinate_personas_for_phase(
        phase,
        phase_context,
        active_systems['persona_integration']
    )
    
    # Execute phase steps with intelligence monitoring
    step_results = []
    for step in phase['steps']:
        # Pre-step intelligence analysis
        pre_step_analysis = await analyze_step_with_intelligence(
            step,
            phase_context,
            active_systems
        )
        
        # Execute step with intelligence enhancement
        step_result = await execute_step_with_intelligence_support(
            step,
            pre_step_analysis,
            persona_coordination,
            active_systems
        )
        
        step_results.append(step_result)
        
        # Post-step learning
        await learn_from_step_execution(
            step,
            step_result,
            active_systems['memory_systems']
        )
    
    return {
        'phase_id': phase['id'],
        'phase_context': phase_context,
        'persona_coordination': persona_coordination,
        'step_results': step_results,
        'phase_outcome': synthesize_phase_outcome(step_results),
        'intelligence_insights': extract_phase_intelligence_insights(step_results)
    }

Enhanced Claude Code Integration

Intelligent Tool Enhancement

async def enhance_claude_code_tools_with_intelligence(active_systems):
    """
    Enhance all Claude Code tools with intelligence capabilities
    """
    enhanced_tools = {
        'read': create_intelligence_enhanced_read(active_systems),
        'write': create_intelligence_enhanced_write(active_systems),
        'edit': create_intelligence_enhanced_edit(active_systems),
        'multi_edit': create_intelligence_enhanced_multi_edit(active_systems),
        'bash': create_intelligence_enhanced_bash(active_systems),
        'grep': create_intelligence_enhanced_grep(active_systems),
        'glob': create_intelligence_enhanced_glob(active_systems)
    }
    
    return enhanced_tools

async def intelligence_enhanced_claude_operation(tool_name, tool_args, active_systems):
    """
    Execute Claude Code operation with full intelligence enhancement
    """
    # Pre-operation intelligence analysis
    pre_analysis = await analyze_operation_with_intelligence(
        tool_name,
        tool_args,
        active_systems
    )
    
    # Apply intelligence-based optimizations
    optimized_args = await optimize_operation_args(
        tool_args,
        pre_analysis,
        active_systems
    )
    
    # Execute with error prevention
    execution_result = await execute_with_error_prevention(
        tool_name,
        optimized_args,
        active_systems['memory_systems']['error_prevention']
    )
    
    # Post-operation learning and memory update
    await update_operation_memory(
        tool_name,
        optimized_args,
        execution_result,
        active_systems['memory_systems']
    )
    
    # Generate intelligence insights for user
    intelligence_insights = await generate_operation_insights(
        execution_result,
        pre_analysis,
        active_systems
    )
    
    return {
        'operation_result': execution_result,
        'intelligence_insights': intelligence_insights,
        'optimizations_applied': pre_analysis.optimizations_suggested,
        'learning_captured': True
    }

System Health and Optimization

Continuous System Improvement

async def monitor_and_optimize_enhanced_system():
    """
    Continuously monitor and optimize the enhanced BMAD system
    """
    monitoring_loop = SystemMonitoringLoop()
    
    async def optimization_cycle():
        while True:
            # Collect system performance metrics
            performance_metrics = await collect_system_performance_metrics()
            
            # Analyze intelligence system effectiveness
            intelligence_effectiveness = await analyze_intelligence_effectiveness()
            
            # Identify optimization opportunities
            optimization_opportunities = await identify_system_optimizations(
                performance_metrics,
                intelligence_effectiveness
            )
            
            # Apply optimizations
            for optimization in optimization_opportunities:
                await apply_system_optimization(optimization)
            
            # Update system learning
            await update_system_wide_learning()
            
            await asyncio.sleep(300)  # Optimize every 5 minutes
    
    await optimization_cycle()

async def generate_system_enhancement_recommendations():
    """
    Generate recommendations for further system enhancements
    """
    # Analyze usage patterns
    usage_analysis = await analyze_system_usage_patterns()
    
    # Identify capability gaps
    capability_gaps = await identify_capability_gaps()
    
    # Assess user satisfaction and effectiveness
    effectiveness_analysis = await assess_system_effectiveness()
    
    # Generate enhancement recommendations
    recommendations = {
        'immediate_improvements': generate_immediate_improvements(usage_analysis),
        'capability_enhancements': generate_capability_enhancements(capability_gaps),
        'user_experience_improvements': generate_ux_improvements(effectiveness_analysis),
        'performance_optimizations': generate_performance_optimizations(usage_analysis)
    }
    
    return recommendations

Master Integration Commands

# Enhanced BMAD system commands
bmad enhanced init --full-intelligence --project-context "current"
bmad enhanced status --detailed --show-intelligence-health
bmad enhanced optimize --all-systems --based-on-usage

# Intelligent request processing
bmad request analyze --intelligent "implement user authentication"
bmad request execute --with-intelligence --strategy "optimal"
bmad request learn --from-outcome --update-patterns

# System coordination and monitoring
bmad orchestrate --coordinate-personas --with-intelligence
bmad monitor --system-health --intelligence-effectiveness
bmad enhance --recommend-improvements --based-on-analytics

# Integration validation and testing
bmad validate --full-system --intelligence-integration
bmad test --intelligence-workflows --all-personas
bmad report --system-effectiveness --intelligence-contributions

This Enhanced BMAD Orchestrator transforms Claude Code into a comprehensive, intelligent development environment that seamlessly coordinates multiple AI personas, applies learned patterns, prevents errors, and continuously improves its capabilities based on experience and outcomes.