BMAD-METHOD/bmad-enhancements/success-metrics.md

16 KiB
Raw Blame History

BMAD Context Engineering Enhancement - Success Metrics

📊 Overview

This document defines comprehensive success metrics, measurement methodologies, and validation criteria for the BMAD Context Engineering Enhancement project. These metrics ensure the enhancements meet performance targets while maintaining BMad Method compliance.


🎯 Primary Success Criteria

1. Dev Agent Leanness Metrics

Objective: Ensure dev agents remain lightweight and focused

Metric Target Measurement Method Priority
Token Limit Compliance <2000 tokens/session Automated counting during agent execution Critical
Context Dependencies <3 dependencies max Static analysis of agent dependency declarations Critical
Compression Efficiency 0.9 compression ratio Token count before/after optimization Critical
Code Relevance >95% code-related content Content analysis scoring algorithm Critical
Load Time Performance <1 second context assembly Timing measurement during agent initialization High

Validation Commands:

# Token limit validation
python -m bmad.metrics.validate_tokens --agent dev --max-tokens 2000

# Dependency compliance check  
python -m bmad.metrics.check_dependencies --agent dev --max-deps 3

# Compression ratio verification
python -m bmad.metrics.test_compression --agent dev --target-ratio 0.9

# Code relevance assessment
python -m bmad.metrics.assess_relevance --agent dev --threshold 0.95

2. Planning Agent Rich Context Metrics

Objective: Enable comprehensive context capabilities for strategic agents

Metric Target Measurement Method Priority
Context Retrieval Accuracy >85% relevance score Semantic search result validation Critical
Context Comprehensiveness >90% domain coverage Knowledge completeness assessment High
Cross-Agent Handoff Success 98% successful transfers Handoff completion rate monitoring Critical
Context Quality Score >4.0/5.0 average Multi-factor quality assessment High
Rich Context Capacity 8000 tokens max utilized Token usage monitoring and optimization Medium

Validation Commands:

# Retrieval accuracy test
python -m bmad.metrics.test_retrieval --min-accuracy 0.85

# Comprehensiveness assessment
python -m bmad.metrics.assess_coverage --min-coverage 0.90

# Handoff success rate monitoring
python -m bmad.metrics.monitor_handoffs --min-success-rate 0.98

# Quality scoring validation
python -m bmad.metrics.score_quality --min-score 4.0

3. BMad Method Compliance Metrics

Objective: Ensure 100% adherence to BMad Method principles

Metric Target Measurement Method Priority
Natural Language Coverage 100% markdown format File format validation Critical
Template Markup Compliance 100% proper markup Template syntax validation Critical
File Size Compliance All files <50KB File size monitoring High
Agent Type Differentiation Clear dev/planning separation Agent capability analysis High
Dynamic Loading Compliance On-demand resource loading Resource loading pattern analysis Medium

Validation Commands:

# Template markup validation
python -m bmad.compliance.validate_markup --compliance 100%

# File size compliance check
python -m bmad.compliance.check_file_sizes --max-size 50KB

# Agent differentiation verification
python -m bmad.compliance.verify_agent_types --strict

📈 Performance Metrics

1. Context Processing Performance

Measurement Frequency: Continuous monitoring

Performance Indicator Target Baseline Current Trend
Context Optimization Time <500ms TBD TBD -
Context Compression Speed <200ms TBD TBD -
Semantic Search Response <2000ms TBD TBD -
Agent Context Assembly <1000ms TBD TBD -
Cross-Agent Handoff Latency <300ms TBD TBD -

2. Memory and Resource Utilization

Measurement Frequency: Per-session monitoring

Resource Metric Target Acceptable Range Warning Threshold
Memory Usage per Agent <100MB 50-150MB >200MB
Context Storage Size <10MB/session 5-20MB >50MB
CPU Usage During Processing <20% 10-30% >50%
Disk I/O for Context Operations <50 ops/sec 20-100 ops/sec >200 ops/sec

3. Scalability Metrics

Measurement Frequency: Load testing cycles

Scalability Factor Target Test Scenario Success Criteria
Concurrent Agent Sessions 50+ sessions Multi-agent workflow <10% performance degradation
Context Data Volume 1GB+ total context Large project simulation <2x response time increase
Context History Depth 1000+ handoffs Extended session simulation <5% accuracy loss
Cross-Session Context Sharing 100+ shared contexts Multi-session workflow <1% context corruption

🎛️ Quality Metrics

1. Context Quality Assessment

Measurement Method: Automated quality scoring + manual validation

Quality Dimension Weight Measurement Criteria Target Score
Relevance 30% Content alignment with task requirements >4.5/5.0
Completeness 25% Information sufficiency for task completion >4.0/5.0
Accuracy 25% Information correctness and validity >4.5/5.0
Freshness 10% Information recency and currency >3.5/5.0
Coherence 10% Logical flow and consistency >4.0/5.0

Overall Quality Score Formula:

Quality Score = (Relevance × 0.3) + (Completeness × 0.25) + (Accuracy × 0.25) + (Freshness × 0.1) + (Coherence × 0.1)
Target: >4.0/5.0

2. User Experience Metrics

Measurement Method: User feedback and behavior analysis

UX Metric Target Measurement Method Frequency
Context Usefulness Rating >4.0/5.0 User surveys Weekly
Agent Response Satisfaction >85% satisfied User feedback forms Per-session
Context Clarity Score >4.2/5.0 Clarity assessment surveys Bi-weekly
Workflow Efficiency Improvement >20% faster Task completion time comparison Monthly

🧪 Testing and Validation Framework

1. Automated Testing Suite

Execution Frequency: Continuous integration

Dev Agent Leanness Tests

# Test Suite: dev_agent_leanness
./tests/dev_leanness/test_token_limits.py
./tests/dev_leanness/test_dependency_count.py
./tests/dev_leanness/test_compression_ratio.py
./tests/dev_leanness/test_code_relevance.py
./tests/dev_leanness/test_performance.py

# Expected Results:
# ✅ All tests pass
# ✅ Token limits: <2000 tokens
# ✅ Dependencies: <3 dependencies
# ✅ Compression: 0.9 ratio achieved
# ✅ Code relevance: >95%

Planning Agent Rich Context Tests

# Test Suite: planning_agent_rich_context
./tests/rich_context/test_semantic_search.py
./tests/rich_context/test_context_retrieval.py
./tests/rich_context/test_cross_agent_handoffs.py
./tests/rich_context/test_context_quality.py
./tests/rich_context/test_memory_management.py

# Expected Results:
# ✅ Semantic search accuracy: >85%
# ✅ Context retrieval coverage: >90%
# ✅ Handoff success rate: >98%
# ✅ Quality score: >4.0/5.0

BMad Compliance Tests

# Test Suite: bmad_compliance
./tests/compliance/test_natural_language.py
./tests/compliance/test_template_markup.py
./tests/compliance/test_file_sizes.py
./tests/compliance/test_agent_differentiation.py

# Expected Results:
# ✅ 100% natural language compliance
# ✅ 100% template markup compliance
# ✅ All files <50KB
# ✅ Clear agent type separation

2. Performance Benchmarking

Execution Frequency: Daily automated benchmarks

Benchmark Test Scenarios

# Scenario 1: Single Agent Performance
python -m bmad.benchmarks.single_agent --agent dev --iterations 100
python -m bmad.benchmarks.single_agent --agent architect --iterations 100

# Scenario 2: Multi-Agent Workflow
python -m bmad.benchmarks.multi_agent --agents dev,architect,pm --workflow standard

# Scenario 3: Context-Heavy Operations
python -m bmad.benchmarks.context_operations --context-size large --operations 1000

# Scenario 4: Stress Testing
python -m bmad.benchmarks.stress_test --concurrent-agents 50 --duration 30min

3. Quality Assurance Validation

Execution Frequency: Weekly manual validation

Manual Validation Checklist

  • Context Relevance: Review 20 random context optimizations for relevance
  • Handoff Quality: Validate 10 cross-agent handoffs for information preservation
  • User Experience: Conduct 5 user sessions with feedback collection
  • Edge Case Handling: Test 10 edge cases for graceful degradation
  • Error Recovery: Validate error handling in 5 failure scenarios

📊 Reporting and Monitoring

1. Real-Time Dashboards

Update Frequency: Real-time

Primary Metrics Dashboard

┌─────────────────────────────────────────────────────────────┐
│                   BMAD Context Engineering Metrics          │
├─────────────────────────────────────────────────────────────┤
│ Dev Agent Leanness:                                         │
│ ├─ Token Compliance: ✅ 1,847/2,000 (92.4%)                │
│ ├─ Dependencies: ✅ 2/3 (66.7%)                             │
│ ├─ Compression: ✅ 0.91 ratio (target: 0.9)                │
│ └─ Code Relevance: ✅ 96.3% (target: >95%)                 │
│                                                             │
│ Planning Agent Rich Context:                                │
│ ├─ Retrieval Accuracy: ✅ 87.2% (target: >85%)             │
│ ├─ Context Coverage: ✅ 91.8% (target: >90%)               │
│ ├─ Handoff Success: ✅ 98.7% (target: >98%)                │
│ └─ Quality Score: ✅ 4.2/5.0 (target: >4.0)               │
│                                                             │
│ BMad Compliance:                                            │
│ ├─ Natural Language: ✅ 100% (target: 100%)                │
│ ├─ Template Markup: ✅ 100% (target: 100%)                 │
│ ├─ File Size: ✅ Avg 23KB (target: <50KB)                  │
│ └─ Agent Differentiation: ✅ Clear separation               │
└─────────────────────────────────────────────────────────────┘

Performance Monitoring Dashboard

┌─────────────────────────────────────────────────────────────┐
│                    Performance Metrics                      │
├─────────────────────────────────────────────────────────────┤
│ Context Operations:                                         │
│ ├─ Optimization Time: ✅ 347ms (target: <500ms)            │
│ ├─ Compression Speed: ✅ 156ms (target: <200ms)            │
│ ├─ Search Response: ✅ 1,234ms (target: <2000ms)           │
│ └─ Agent Assembly: ✅ 678ms (target: <1000ms)              │
│                                                             │
│ Resource Utilization:                                       │
│ ├─ Memory Usage: ✅ 78MB (target: <100MB)                  │
│ ├─ Context Storage: ✅ 8.3MB (target: <10MB)               │
│ ├─ CPU Usage: ✅ 14.2% (target: <20%)                      │
│ └─ Disk I/O: ✅ 34 ops/sec (target: <50 ops/sec)           │
└─────────────────────────────────────────────────────────────┘

2. Weekly Reports

Generation: Automated weekly summary

Weekly Report Template

# BMAD Context Engineering - Weekly Report

## Summary
- **Overall Health**: ✅ All metrics within targets
- **Performance**: ✅ No degradation observed
- **Compliance**: ✅ 100% BMad Method adherence
- **User Satisfaction**: ✅ 4.3/5.0 average rating

## Key Achievements
- Dev agent leanness maintained: 96.3% code relevance
- Planning agent enhancements: 87.2% retrieval accuracy
- Cross-agent handoffs: 98.7% success rate
- Zero compliance violations

## Areas for Improvement
- Context compression speed: Target optimization for faster processing
- Memory usage optimization: Reduce average usage by 10%
- User experience enhancements: Focus on context clarity

## Action Items
1. Investigate compression algorithm optimizations
2. Implement memory usage monitoring alerts
3. Conduct user feedback sessions for UX improvements

## Next Week Focus
- Performance optimization initiatives
- User experience enhancement planning
- Preparation for month-end comprehensive review

3. Monthly Comprehensive Reviews

Frequency: Monthly stakeholder review

Monthly Review Agenda

  1. Metrics Review: Comprehensive analysis of all success criteria
  2. Performance Analysis: Trend analysis and performance optimization
  3. Compliance Validation: BMad Method adherence verification
  4. User Feedback: Stakeholder satisfaction and improvement suggestions
  5. Roadmap Updates: Future enhancement planning based on results

🎯 Success Thresholds

Minimum Viable Success (MVP)

  • Dev agents: <2000 tokens, <3 dependencies, 0.9 compression
  • Planning agents: >80% retrieval accuracy, >95% handoff success
  • BMad compliance: >95% natural language, proper markup
  • Performance: No degradation from baseline

Target Success (Preferred)

  • Dev agents: All MVP criteria + >95% code relevance
  • Planning agents: >85% retrieval accuracy, >98% handoff success
  • BMad compliance: 100% adherence across all criteria
  • Performance: 20% improvement over baseline

Exceptional Success (Stretch Goals)

  • Dev agents: All target criteria + <1500 token average usage
  • Planning agents: >90% retrieval accuracy, >99% handoff success
  • BMad compliance: 100% + documentation quality excellence
  • Performance: 50% improvement + scalability validation

🔍 Monitoring Implementation Plan

Phase 1: Basic Monitoring (Week 1-2)

  • Implement automated token counting
  • Set up dependency validation
  • Configure compression ratio monitoring
  • Establish baseline performance metrics

Phase 2: Advanced Monitoring (Week 3-4)

  • Deploy semantic search accuracy measurement
  • Implement context quality scoring
  • Configure cross-agent handoff monitoring
  • Set up real-time dashboards

Phase 3: Comprehensive Analytics (Week 5-6)

  • Deploy user experience tracking
  • Implement scalability monitoring
  • Configure automated reporting
  • Establish alert systems for threshold violations

Document Status: Complete
Monitoring Ready: All metrics and measurement methods defined
Implementation Priority: Begin with Phase 1 basic monitoring
Review Schedule: Weekly metrics review, monthly comprehensive assessment