1245 lines
55 KiB
Markdown
1245 lines
55 KiB
Markdown
# Self-Optimization Engine
|
|
|
|
## Autonomous System Optimization and Meta-Learning for Enhanced BMAD System
|
|
|
|
The Self-Optimization Engine provides sophisticated autonomous optimization capabilities that enable the BMAD system to continuously optimize itself, its performance, resource utilization, and operational efficiency through advanced meta-learning, adaptive algorithms, and intelligent resource management.
|
|
|
|
### Self-Optimization Architecture
|
|
|
|
#### Comprehensive Self-Optimization Framework
|
|
```yaml
|
|
self_optimization_architecture:
|
|
meta_optimization:
|
|
optimization_optimization:
|
|
- optimizer_performance_optimization: "Optimize the performance of optimizers themselves"
|
|
- meta_learning_enhancement: "Improve learning algorithms through meta-learning"
|
|
- adaptive_algorithm_selection: "Automatically select optimal algorithms for tasks"
|
|
- hyperparameter_auto_tuning: "Automatically tune system hyperparameters"
|
|
- optimization_strategy_evolution: "Evolve optimization strategies over time"
|
|
|
|
system_architecture_optimization:
|
|
- component_interaction_optimization: "Optimize interactions between system components"
|
|
- data_flow_optimization: "Optimize data flow patterns across the system"
|
|
- computational_graph_optimization: "Optimize computational execution graphs"
|
|
- memory_hierarchy_optimization: "Optimize memory usage patterns and hierarchies"
|
|
- communication_protocol_optimization: "Optimize inter-component communication"
|
|
|
|
capability_enhancement:
|
|
- skill_acquisition_optimization: "Optimize the process of acquiring new skills"
|
|
- knowledge_integration_optimization: "Optimize knowledge integration processes"
|
|
- learning_transfer_optimization: "Optimize transfer learning between domains"
|
|
- expertise_specialization: "Automatically develop specialized expertise"
|
|
- capability_synergy_optimization: "Optimize synergies between capabilities"
|
|
|
|
resource_optimization:
|
|
computational_resource_optimization:
|
|
- cpu_utilization_optimization: "Optimize CPU usage patterns and allocation"
|
|
- memory_management_optimization: "Optimize memory allocation and garbage collection"
|
|
- gpu_acceleration_optimization: "Optimize GPU utilization for ML workloads"
|
|
- storage_optimization: "Optimize storage usage and access patterns"
|
|
- network_bandwidth_optimization: "Optimize network resource utilization"
|
|
|
|
infrastructure_optimization:
|
|
- auto_scaling_optimization: "Intelligent auto-scaling based on predictive models"
|
|
- load_balancing_optimization: "Optimize load distribution across resources"
|
|
- container_orchestration_optimization: "Optimize container deployment and management"
|
|
- cloud_resource_optimization: "Optimize cloud resource allocation and costs"
|
|
- hybrid_infrastructure_optimization: "Optimize hybrid cloud and on-premise deployments"
|
|
|
|
energy_efficiency_optimization:
|
|
- power_consumption_optimization: "Minimize power consumption while maintaining performance"
|
|
- thermal_management_optimization: "Optimize thermal characteristics and cooling"
|
|
- carbon_footprint_optimization: "Minimize environmental impact of operations"
|
|
- sustainable_computing_optimization: "Optimize for sustainable computing practices"
|
|
- green_ai_optimization: "Optimize AI models for environmental sustainability"
|
|
|
|
performance_optimization:
|
|
latency_optimization:
|
|
- response_time_minimization: "Minimize system response times"
|
|
- cache_optimization: "Optimize caching strategies and hit rates"
|
|
- prefetching_optimization: "Optimize data and computation prefetching"
|
|
- pipeline_optimization: "Optimize processing pipelines and parallelization"
|
|
- bottleneck_elimination: "Automatically identify and eliminate bottlenecks"
|
|
|
|
throughput_optimization:
|
|
- concurrent_processing_optimization: "Optimize concurrent processing capabilities"
|
|
- batch_processing_optimization: "Optimize batch processing efficiency"
|
|
- streaming_optimization: "Optimize real-time streaming processing"
|
|
- queue_management_optimization: "Optimize queue management and processing"
|
|
- workflow_optimization: "Optimize end-to-end workflow performance"
|
|
|
|
quality_optimization:
|
|
- accuracy_improvement_optimization: "Continuously improve prediction accuracy"
|
|
- precision_recall_optimization: "Optimize precision-recall trade-offs"
|
|
- robustness_optimization: "Improve system robustness and reliability"
|
|
- consistency_optimization: "Ensure consistent performance across conditions"
|
|
- adaptability_optimization: "Improve system adaptability to changing conditions"
|
|
|
|
adaptive_optimization:
|
|
context_aware_optimization:
|
|
- workload_pattern_adaptation: "Adapt optimization based on workload patterns"
|
|
- user_behavior_adaptation: "Adapt optimization based on user behavior patterns"
|
|
- temporal_pattern_adaptation: "Adapt optimization based on temporal patterns"
|
|
- environmental_adaptation: "Adapt optimization to environmental changes"
|
|
- domain_specific_adaptation: "Adapt optimization to specific problem domains"
|
|
|
|
predictive_optimization:
|
|
- proactive_optimization: "Optimize proactively based on predictions"
|
|
- demand_forecasting_optimization: "Optimize based on demand forecasting"
|
|
- failure_prediction_optimization: "Optimize to prevent predicted failures"
|
|
- capacity_planning_optimization: "Optimize capacity based on growth predictions"
|
|
- maintenance_scheduling_optimization: "Optimize maintenance scheduling"
|
|
|
|
evolutionary_optimization:
|
|
- genetic_algorithm_optimization: "Use genetic algorithms for system optimization"
|
|
- neural_architecture_search: "Automatically optimize neural network architectures"
|
|
- reinforcement_learning_optimization: "Use RL for continuous system optimization"
|
|
- swarm_intelligence_optimization: "Apply swarm intelligence to optimization problems"
|
|
- multi_objective_optimization: "Optimize multiple conflicting objectives simultaneously"
|
|
```
|
|
|
|
#### Self-Optimization Engine Implementation
|
|
```python
|
|
import asyncio
|
|
import numpy as np
|
|
import pandas as pd
|
|
from typing import Dict, List, Any, Optional, Tuple, Callable, Union
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
from datetime import datetime, timedelta
|
|
import json
|
|
import pickle
|
|
import psutil
|
|
import threading
|
|
import multiprocessing
|
|
from concurrent.futures import ThreadPoolExecutor, ProcessPoolExecutor
|
|
import gc
|
|
import time
|
|
import warnings
|
|
from collections import defaultdict, deque
|
|
import optuna
|
|
from sklearn.gaussian_process import GaussianProcessRegressor
|
|
from sklearn.gaussian_process.kernels import Matern
|
|
import networkx as nx
|
|
from scipy.optimize import minimize, differential_evolution
|
|
import torch
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
|
|
class OptimizationType(Enum):
|
|
PERFORMANCE = "performance"
|
|
RESOURCE = "resource"
|
|
QUALITY = "quality"
|
|
COST = "cost"
|
|
ENERGY = "energy"
|
|
LATENCY = "latency"
|
|
THROUGHPUT = "throughput"
|
|
|
|
class OptimizationScope(Enum):
|
|
COMPONENT = "component"
|
|
SYSTEM = "system"
|
|
INFRASTRUCTURE = "infrastructure"
|
|
GLOBAL = "global"
|
|
|
|
class OptimizationStrategy(Enum):
|
|
GRADIENT_BASED = "gradient_based"
|
|
EVOLUTIONARY = "evolutionary"
|
|
BAYESIAN = "bayesian"
|
|
REINFORCEMENT_LEARNING = "reinforcement_learning"
|
|
MULTI_OBJECTIVE = "multi_objective"
|
|
HYBRID = "hybrid"
|
|
|
|
@dataclass
|
|
class OptimizationObjective:
|
|
"""
|
|
Represents an optimization objective with metrics and constraints
|
|
"""
|
|
objective_id: str
|
|
name: str
|
|
type: OptimizationType
|
|
scope: OptimizationScope
|
|
target_metric: str
|
|
optimization_direction: str # minimize, maximize
|
|
weight: float = 1.0
|
|
constraints: List[Dict[str, Any]] = field(default_factory=list)
|
|
success_criteria: Dict[str, Any] = field(default_factory=dict)
|
|
|
|
@dataclass
|
|
class OptimizationResult:
|
|
"""
|
|
Results from an optimization run
|
|
"""
|
|
optimization_id: str
|
|
objective: OptimizationObjective
|
|
strategy_used: OptimizationStrategy
|
|
best_parameters: Dict[str, Any]
|
|
best_score: float
|
|
improvement_percentage: float
|
|
optimization_history: List[Dict[str, Any]] = field(default_factory=list)
|
|
convergence_metrics: Dict[str, Any] = field(default_factory=dict)
|
|
runtime_seconds: float = 0.0
|
|
iterations: int = 0
|
|
|
|
@dataclass
|
|
class SystemState:
|
|
"""
|
|
Represents current system state for optimization
|
|
"""
|
|
timestamp: datetime
|
|
performance_metrics: Dict[str, float]
|
|
resource_utilization: Dict[str, float]
|
|
configuration_parameters: Dict[str, Any]
|
|
workload_characteristics: Dict[str, Any]
|
|
environmental_factors: Dict[str, Any]
|
|
|
|
class SelfOptimizationEngine:
|
|
"""
|
|
Advanced self-optimization engine with meta-learning and adaptive capabilities
|
|
"""
|
|
|
|
def __init__(self, config=None):
|
|
self.config = config or {
|
|
'optimization_frequency_minutes': 60,
|
|
'meta_learning_enabled': True,
|
|
'adaptive_optimization': True,
|
|
'multi_objective_optimization': True,
|
|
'continuous_optimization': True,
|
|
'optimization_history_limit': 1000,
|
|
'convergence_patience': 10,
|
|
'resource_constraints': {
|
|
'max_cpu_usage': 0.8,
|
|
'max_memory_usage': 0.8,
|
|
'max_optimization_time': 3600
|
|
}
|
|
}
|
|
|
|
# Core optimization components
|
|
self.meta_optimizer = MetaOptimizer(self.config)
|
|
self.resource_optimizer = ResourceOptimizer(self.config)
|
|
self.performance_optimizer = PerformanceOptimizer(self.config)
|
|
self.adaptive_optimizer = AdaptiveOptimizer(self.config)
|
|
|
|
# Optimization strategies
|
|
self.bayesian_optimizer = BayesianOptimizer(self.config)
|
|
self.evolutionary_optimizer = EvolutionaryOptimizer(self.config)
|
|
self.rl_optimizer = ReinforcementLearningOptimizer(self.config)
|
|
self.multi_objective_optimizer = MultiObjectiveOptimizer(self.config)
|
|
|
|
# System monitoring and state management
|
|
self.system_monitor = SystemMonitor(self.config)
|
|
self.state_history = deque(maxlen=self.config['optimization_history_limit'])
|
|
self.optimization_history = []
|
|
|
|
# Meta-learning and adaptation
|
|
self.meta_learner = MetaLearner(self.config)
|
|
self.optimization_strategy_selector = OptimizationStrategySelector(self.config)
|
|
|
|
# Self-optimization state
|
|
self.optimization_active = False
|
|
self.current_optimizations = {}
|
|
self.optimization_scheduler = OptimizationScheduler(self.config)
|
|
|
|
# Performance tracking
|
|
self.optimization_performance = defaultdict(list)
|
|
self.system_performance_baseline = None
|
|
|
|
async def start_continuous_optimization(self):
|
|
"""
|
|
Start continuous self-optimization process
|
|
"""
|
|
if self.optimization_active:
|
|
return
|
|
|
|
self.optimization_active = True
|
|
|
|
# Initialize baseline performance
|
|
self.system_performance_baseline = await self.establish_performance_baseline()
|
|
|
|
# Start optimization loop
|
|
optimization_task = asyncio.create_task(self.continuous_optimization_loop())
|
|
|
|
# Start monitoring
|
|
monitoring_task = asyncio.create_task(self.continuous_monitoring_loop())
|
|
|
|
# Start meta-learning
|
|
meta_learning_task = asyncio.create_task(self.continuous_meta_learning_loop())
|
|
|
|
return await asyncio.gather(
|
|
optimization_task,
|
|
monitoring_task,
|
|
meta_learning_task,
|
|
return_exceptions=True
|
|
)
|
|
|
|
async def continuous_optimization_loop(self):
|
|
"""
|
|
Main continuous optimization loop
|
|
"""
|
|
while self.optimization_active:
|
|
try:
|
|
# Capture current system state
|
|
current_state = await self.system_monitor.capture_system_state()
|
|
self.state_history.append(current_state)
|
|
|
|
# Identify optimization opportunities
|
|
optimization_opportunities = await self.identify_optimization_opportunities(
|
|
current_state
|
|
)
|
|
|
|
# Prioritize optimizations
|
|
prioritized_optimizations = await self.prioritize_optimizations(
|
|
optimization_opportunities
|
|
)
|
|
|
|
# Execute high-priority optimizations
|
|
for optimization in prioritized_optimizations[:3]: # Top 3
|
|
if optimization['priority'] > 0.7: # High priority threshold
|
|
optimization_result = await self.execute_optimization(optimization)
|
|
|
|
if optimization_result['success']:
|
|
await self.apply_optimization_result(optimization_result)
|
|
|
|
# Meta-optimization: optimize the optimization process itself
|
|
if self.config['meta_learning_enabled']:
|
|
await self.meta_optimize_optimization_process()
|
|
|
|
# Wait for next optimization cycle
|
|
await asyncio.sleep(self.config['optimization_frequency_minutes'] * 60)
|
|
|
|
except Exception as e:
|
|
# Log error but continue optimization
|
|
print(f"Error in optimization loop: {e}")
|
|
await asyncio.sleep(300) # 5-minute error recovery wait
|
|
|
|
async def identify_optimization_opportunities(self, current_state: SystemState):
|
|
"""
|
|
Identify potential optimization opportunities based on current system state
|
|
"""
|
|
opportunities = []
|
|
|
|
# Performance optimization opportunities
|
|
performance_opportunities = await self.identify_performance_opportunities(current_state)
|
|
opportunities.extend(performance_opportunities)
|
|
|
|
# Resource optimization opportunities
|
|
resource_opportunities = await self.identify_resource_opportunities(current_state)
|
|
opportunities.extend(resource_opportunities)
|
|
|
|
# Quality optimization opportunities
|
|
quality_opportunities = await self.identify_quality_opportunities(current_state)
|
|
opportunities.extend(quality_opportunities)
|
|
|
|
# Cost optimization opportunities
|
|
cost_opportunities = await self.identify_cost_opportunities(current_state)
|
|
opportunities.extend(cost_opportunities)
|
|
|
|
# Meta-optimization opportunities
|
|
meta_opportunities = await self.identify_meta_optimization_opportunities(current_state)
|
|
opportunities.extend(meta_opportunities)
|
|
|
|
return opportunities
|
|
|
|
async def identify_performance_opportunities(self, current_state: SystemState):
|
|
"""
|
|
Identify performance optimization opportunities
|
|
"""
|
|
opportunities = []
|
|
|
|
# Analyze performance metrics against baseline
|
|
if self.system_performance_baseline:
|
|
for metric, current_value in current_state.performance_metrics.items():
|
|
baseline_value = self.system_performance_baseline.get(metric)
|
|
|
|
if baseline_value and current_value < baseline_value * 0.9: # 10% degradation
|
|
opportunities.append({
|
|
'type': OptimizationType.PERFORMANCE,
|
|
'scope': OptimizationScope.SYSTEM,
|
|
'metric': metric,
|
|
'current_value': current_value,
|
|
'baseline_value': baseline_value,
|
|
'degradation': (baseline_value - current_value) / baseline_value,
|
|
'priority': min(1.0, (baseline_value - current_value) / baseline_value * 2),
|
|
'optimization_objective': OptimizationObjective(
|
|
objective_id=generate_uuid(),
|
|
name=f"Improve {metric}",
|
|
type=OptimizationType.PERFORMANCE,
|
|
scope=OptimizationScope.SYSTEM,
|
|
target_metric=metric,
|
|
optimization_direction='maximize',
|
|
success_criteria={'target_improvement': 0.1}
|
|
)
|
|
})
|
|
|
|
# Identify latency optimization opportunities
|
|
if current_state.performance_metrics.get('average_response_time', 0) > 2.0: # > 2 seconds
|
|
opportunities.append({
|
|
'type': OptimizationType.LATENCY,
|
|
'scope': OptimizationScope.SYSTEM,
|
|
'description': 'High response time detected',
|
|
'priority': 0.8,
|
|
'optimization_objective': OptimizationObjective(
|
|
objective_id=generate_uuid(),
|
|
name="Reduce Response Time",
|
|
type=OptimizationType.LATENCY,
|
|
scope=OptimizationScope.SYSTEM,
|
|
target_metric='average_response_time',
|
|
optimization_direction='minimize',
|
|
success_criteria={'target_value': 1.0}
|
|
)
|
|
})
|
|
|
|
# Identify throughput optimization opportunities
|
|
if current_state.performance_metrics.get('throughput', 0) < 100: # < 100 requests/sec
|
|
opportunities.append({
|
|
'type': OptimizationType.THROUGHPUT,
|
|
'scope': OptimizationScope.SYSTEM,
|
|
'description': 'Low throughput detected',
|
|
'priority': 0.7,
|
|
'optimization_objective': OptimizationObjective(
|
|
objective_id=generate_uuid(),
|
|
name="Increase Throughput",
|
|
type=OptimizationType.THROUGHPUT,
|
|
scope=OptimizationScope.SYSTEM,
|
|
target_metric='throughput',
|
|
optimization_direction='maximize',
|
|
success_criteria={'target_improvement': 0.2}
|
|
)
|
|
})
|
|
|
|
return opportunities
|
|
|
|
async def identify_resource_opportunities(self, current_state: SystemState):
|
|
"""
|
|
Identify resource optimization opportunities
|
|
"""
|
|
opportunities = []
|
|
|
|
# CPU optimization opportunities
|
|
cpu_usage = current_state.resource_utilization.get('cpu_usage', 0)
|
|
if cpu_usage > 0.8: # High CPU usage
|
|
opportunities.append({
|
|
'type': OptimizationType.RESOURCE,
|
|
'scope': OptimizationScope.INFRASTRUCTURE,
|
|
'resource': 'cpu',
|
|
'description': f'High CPU usage: {cpu_usage:.1%}',
|
|
'priority': min(1.0, (cpu_usage - 0.8) / 0.2),
|
|
'optimization_objective': OptimizationObjective(
|
|
objective_id=generate_uuid(),
|
|
name="Optimize CPU Usage",
|
|
type=OptimizationType.RESOURCE,
|
|
scope=OptimizationScope.INFRASTRUCTURE,
|
|
target_metric='cpu_usage',
|
|
optimization_direction='minimize',
|
|
success_criteria={'target_value': 0.7}
|
|
)
|
|
})
|
|
|
|
# Memory optimization opportunities
|
|
memory_usage = current_state.resource_utilization.get('memory_usage', 0)
|
|
if memory_usage > 0.85: # High memory usage
|
|
opportunities.append({
|
|
'type': OptimizationType.RESOURCE,
|
|
'scope': OptimizationScope.INFRASTRUCTURE,
|
|
'resource': 'memory',
|
|
'description': f'High memory usage: {memory_usage:.1%}',
|
|
'priority': min(1.0, (memory_usage - 0.85) / 0.15),
|
|
'optimization_objective': OptimizationObjective(
|
|
objective_id=generate_uuid(),
|
|
name="Optimize Memory Usage",
|
|
type=OptimizationType.RESOURCE,
|
|
scope=OptimizationScope.INFRASTRUCTURE,
|
|
target_metric='memory_usage',
|
|
optimization_direction='minimize',
|
|
success_criteria={'target_value': 0.75}
|
|
)
|
|
})
|
|
|
|
# Storage optimization opportunities
|
|
storage_usage = current_state.resource_utilization.get('storage_usage', 0)
|
|
if storage_usage > 0.9: # High storage usage
|
|
opportunities.append({
|
|
'type': OptimizationType.RESOURCE,
|
|
'scope': OptimizationScope.INFRASTRUCTURE,
|
|
'resource': 'storage',
|
|
'description': f'High storage usage: {storage_usage:.1%}',
|
|
'priority': min(1.0, (storage_usage - 0.9) / 0.1),
|
|
'optimization_objective': OptimizationObjective(
|
|
objective_id=generate_uuid(),
|
|
name="Optimize Storage Usage",
|
|
type=OptimizationType.RESOURCE,
|
|
scope=OptimizationScope.INFRASTRUCTURE,
|
|
target_metric='storage_usage',
|
|
optimization_direction='minimize',
|
|
success_criteria={'target_value': 0.8}
|
|
)
|
|
})
|
|
|
|
return opportunities
|
|
|
|
async def prioritize_optimizations(self, opportunities):
|
|
"""
|
|
Prioritize optimization opportunities based on impact and feasibility
|
|
"""
|
|
prioritized = []
|
|
|
|
for opportunity in opportunities:
|
|
# Calculate priority score
|
|
priority_score = opportunity.get('priority', 0.5)
|
|
|
|
# Adjust based on historical success rate
|
|
historical_success = await self.get_historical_success_rate(
|
|
opportunity['type'],
|
|
opportunity['scope']
|
|
)
|
|
priority_score *= (0.5 + historical_success * 0.5)
|
|
|
|
# Adjust based on resource availability
|
|
resource_availability = await self.assess_resource_availability()
|
|
priority_score *= resource_availability
|
|
|
|
# Adjust based on potential impact
|
|
potential_impact = await self.estimate_optimization_impact(opportunity)
|
|
priority_score *= (0.7 + potential_impact * 0.3)
|
|
|
|
opportunity['final_priority'] = priority_score
|
|
prioritized.append(opportunity)
|
|
|
|
# Sort by priority (highest first)
|
|
prioritized.sort(key=lambda x: x['final_priority'], reverse=True)
|
|
|
|
return prioritized
|
|
|
|
async def execute_optimization(self, optimization_opportunity):
|
|
"""
|
|
Execute a specific optimization
|
|
"""
|
|
optimization_session = {
|
|
'session_id': generate_uuid(),
|
|
'start_time': datetime.utcnow(),
|
|
'opportunity': optimization_opportunity,
|
|
'strategy_selected': None,
|
|
'optimization_result': None,
|
|
'success': False
|
|
}
|
|
|
|
try:
|
|
# Select optimal optimization strategy
|
|
optimal_strategy = await self.optimization_strategy_selector.select_strategy(
|
|
optimization_opportunity
|
|
)
|
|
optimization_session['strategy_selected'] = optimal_strategy
|
|
|
|
# Execute optimization based on strategy
|
|
if optimal_strategy == OptimizationStrategy.BAYESIAN:
|
|
optimization_result = await self.bayesian_optimizer.optimize(
|
|
optimization_opportunity['optimization_objective']
|
|
)
|
|
elif optimal_strategy == OptimizationStrategy.EVOLUTIONARY:
|
|
optimization_result = await self.evolutionary_optimizer.optimize(
|
|
optimization_opportunity['optimization_objective']
|
|
)
|
|
elif optimal_strategy == OptimizationStrategy.REINFORCEMENT_LEARNING:
|
|
optimization_result = await self.rl_optimizer.optimize(
|
|
optimization_opportunity['optimization_objective']
|
|
)
|
|
elif optimal_strategy == OptimizationStrategy.MULTI_OBJECTIVE:
|
|
optimization_result = await self.multi_objective_optimizer.optimize(
|
|
optimization_opportunity['optimization_objective']
|
|
)
|
|
else:
|
|
optimization_result = await self.execute_gradient_based_optimization(
|
|
optimization_opportunity['optimization_objective']
|
|
)
|
|
|
|
optimization_session['optimization_result'] = optimization_result
|
|
optimization_session['success'] = optimization_result.best_score > 0
|
|
|
|
# Learn from optimization result
|
|
await self.meta_learner.learn_from_optimization(
|
|
optimization_opportunity,
|
|
optimal_strategy,
|
|
optimization_result
|
|
)
|
|
|
|
except Exception as e:
|
|
optimization_session['error'] = str(e)
|
|
optimization_session['success'] = False
|
|
|
|
finally:
|
|
optimization_session['end_time'] = datetime.utcnow()
|
|
optimization_session['duration'] = (
|
|
optimization_session['end_time'] - optimization_session['start_time']
|
|
).total_seconds()
|
|
|
|
# Store optimization history
|
|
self.optimization_history.append(optimization_session)
|
|
|
|
return optimization_session
|
|
|
|
async def apply_optimization_result(self, optimization_result):
|
|
"""
|
|
Apply the results of a successful optimization
|
|
"""
|
|
application_session = {
|
|
'application_id': generate_uuid(),
|
|
'start_time': datetime.utcnow(),
|
|
'optimization_result': optimization_result,
|
|
'changes_applied': [],
|
|
'validation_results': {},
|
|
'success': False
|
|
}
|
|
|
|
try:
|
|
if not optimization_result['success']:
|
|
return application_session
|
|
|
|
result = optimization_result['optimization_result']
|
|
objective = optimization_result['opportunity']['optimization_objective']
|
|
|
|
# Apply optimization based on type and scope
|
|
if objective.type == OptimizationType.PERFORMANCE:
|
|
changes = await self.apply_performance_optimization(result, objective)
|
|
elif objective.type == OptimizationType.RESOURCE:
|
|
changes = await self.apply_resource_optimization(result, objective)
|
|
elif objective.type == OptimizationType.QUALITY:
|
|
changes = await self.apply_quality_optimization(result, objective)
|
|
elif objective.type == OptimizationType.COST:
|
|
changes = await self.apply_cost_optimization(result, objective)
|
|
else:
|
|
changes = await self.apply_generic_optimization(result, objective)
|
|
|
|
application_session['changes_applied'] = changes
|
|
|
|
# Validate optimization effectiveness
|
|
await asyncio.sleep(30) # Wait for changes to take effect
|
|
|
|
validation_results = await self.validate_optimization_effectiveness(
|
|
objective,
|
|
result,
|
|
changes
|
|
)
|
|
application_session['validation_results'] = validation_results
|
|
application_session['success'] = validation_results.get('effective', False)
|
|
|
|
# If optimization is not effective, consider rollback
|
|
if not application_session['success']:
|
|
rollback_result = await self.rollback_optimization(changes)
|
|
application_session['rollback_result'] = rollback_result
|
|
|
|
except Exception as e:
|
|
application_session['error'] = str(e)
|
|
application_session['success'] = False
|
|
|
|
finally:
|
|
application_session['end_time'] = datetime.utcnow()
|
|
application_session['application_duration'] = (
|
|
application_session['end_time'] - application_session['start_time']
|
|
).total_seconds()
|
|
|
|
return application_session
|
|
|
|
async def meta_optimize_optimization_process(self):
|
|
"""
|
|
Meta-optimization: optimize the optimization process itself
|
|
"""
|
|
meta_optimization_session = {
|
|
'session_id': generate_uuid(),
|
|
'start_time': datetime.utcnow(),
|
|
'optimizations_analyzed': len(self.optimization_history),
|
|
'improvements_identified': [],
|
|
'improvements_applied': []
|
|
}
|
|
|
|
# Analyze optimization performance patterns
|
|
optimization_performance_analysis = await self.analyze_optimization_performance_patterns()
|
|
|
|
# Identify meta-optimization opportunities
|
|
meta_opportunities = []
|
|
|
|
# Strategy selection optimization
|
|
strategy_performance = await self.analyze_strategy_performance()
|
|
if strategy_performance['improvement_potential'] > 0.1:
|
|
meta_opportunities.append({
|
|
'type': 'strategy_selection',
|
|
'improvement_potential': strategy_performance['improvement_potential'],
|
|
'recommendation': 'Optimize strategy selection algorithm'
|
|
})
|
|
|
|
# Parameter tuning optimization
|
|
parameter_tuning_analysis = await self.analyze_parameter_tuning_effectiveness()
|
|
if parameter_tuning_analysis['improvement_potential'] > 0.1:
|
|
meta_opportunities.append({
|
|
'type': 'parameter_tuning',
|
|
'improvement_potential': parameter_tuning_analysis['improvement_potential'],
|
|
'recommendation': 'Optimize hyperparameter tuning process'
|
|
})
|
|
|
|
# Optimization scheduling optimization
|
|
scheduling_analysis = await self.analyze_optimization_scheduling()
|
|
if scheduling_analysis['improvement_potential'] > 0.1:
|
|
meta_opportunities.append({
|
|
'type': 'scheduling',
|
|
'improvement_potential': scheduling_analysis['improvement_potential'],
|
|
'recommendation': 'Optimize optimization scheduling strategy'
|
|
})
|
|
|
|
meta_optimization_session['improvements_identified'] = meta_opportunities
|
|
|
|
# Apply meta-optimizations
|
|
for opportunity in meta_opportunities:
|
|
if opportunity['improvement_potential'] > 0.2: # Significant improvement potential
|
|
improvement_result = await self.apply_meta_optimization(opportunity)
|
|
meta_optimization_session['improvements_applied'].append(improvement_result)
|
|
|
|
meta_optimization_session['end_time'] = datetime.utcnow()
|
|
return meta_optimization_session
|
|
|
|
class MetaOptimizer:
|
|
"""
|
|
Meta-optimization capabilities for optimizing optimization processes
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.optimization_strategy_performance = defaultdict(list)
|
|
self.meta_learning_models = {}
|
|
|
|
async def optimize_optimization_strategy(self, historical_data):
|
|
"""
|
|
Optimize the strategy for selecting optimization algorithms
|
|
"""
|
|
strategy_optimization = {
|
|
'optimization_id': generate_uuid(),
|
|
'timestamp': datetime.utcnow(),
|
|
'strategy_performance_analysis': {},
|
|
'optimal_strategy_mapping': {},
|
|
'improvement_estimation': 0.0
|
|
}
|
|
|
|
# Analyze performance of different strategies across problem types
|
|
strategy_performance = {}
|
|
for optimization_record in historical_data:
|
|
strategy_used = optimization_record.get('strategy_selected')
|
|
problem_type = optimization_record.get('opportunity', {}).get('type')
|
|
success = optimization_record.get('success', False)
|
|
improvement = optimization_record.get('optimization_result', {}).get('improvement_percentage', 0)
|
|
|
|
if strategy_used and problem_type:
|
|
key = f"{problem_type}_{strategy_used}"
|
|
if key not in strategy_performance:
|
|
strategy_performance[key] = {'successes': 0, 'attempts': 0, 'total_improvement': 0}
|
|
|
|
strategy_performance[key]['attempts'] += 1
|
|
if success:
|
|
strategy_performance[key]['successes'] += 1
|
|
strategy_performance[key]['total_improvement'] += improvement
|
|
|
|
# Calculate success rates and average improvements
|
|
for key, data in strategy_performance.items():
|
|
data['success_rate'] = data['successes'] / data['attempts'] if data['attempts'] > 0 else 0
|
|
data['avg_improvement'] = data['total_improvement'] / data['successes'] if data['successes'] > 0 else 0
|
|
data['effectiveness_score'] = data['success_rate'] * data['avg_improvement']
|
|
|
|
strategy_optimization['strategy_performance_analysis'] = strategy_performance
|
|
|
|
# Determine optimal strategy mapping
|
|
problem_types = set(record.get('opportunity', {}).get('type') for record in historical_data)
|
|
optimal_mapping = {}
|
|
|
|
for problem_type in problem_types:
|
|
if problem_type:
|
|
# Find best strategy for this problem type
|
|
relevant_strategies = {k: v for k, v in strategy_performance.items() if k.startswith(f"{problem_type}_")}
|
|
if relevant_strategies:
|
|
best_strategy = max(relevant_strategies.items(), key=lambda x: x[1]['effectiveness_score'])
|
|
optimal_mapping[problem_type] = {
|
|
'strategy': best_strategy[0].split('_', 1)[1],
|
|
'effectiveness_score': best_strategy[1]['effectiveness_score']
|
|
}
|
|
|
|
strategy_optimization['optimal_strategy_mapping'] = optimal_mapping
|
|
|
|
return strategy_optimization
|
|
|
|
async def optimize_hyperparameters(self, optimization_algorithm, performance_history):
|
|
"""
|
|
Optimize hyperparameters for optimization algorithms
|
|
"""
|
|
hyperparameter_optimization = {
|
|
'algorithm': optimization_algorithm,
|
|
'optimization_id': generate_uuid(),
|
|
'timestamp': datetime.utcnow(),
|
|
'optimal_hyperparameters': {},
|
|
'performance_improvement': 0.0
|
|
}
|
|
|
|
# Define hyperparameter search space based on algorithm
|
|
if optimization_algorithm == 'bayesian':
|
|
search_space = {
|
|
'acquisition_function': ['ei', 'poi', 'ucb'],
|
|
'kernel': ['matern', 'rbf'],
|
|
'alpha': [1e-6, 1e-4, 1e-2],
|
|
'n_restarts_optimizer': [0, 5, 10]
|
|
}
|
|
elif optimization_algorithm == 'evolutionary':
|
|
search_space = {
|
|
'population_size': [50, 100, 200],
|
|
'mutation_rate': [0.01, 0.1, 0.2],
|
|
'crossover_rate': [0.7, 0.8, 0.9],
|
|
'selection_method': ['tournament', 'roulette', 'rank']
|
|
}
|
|
else:
|
|
# Generic search space
|
|
search_space = {
|
|
'learning_rate': [0.001, 0.01, 0.1],
|
|
'regularization': [0.0, 0.01, 0.1],
|
|
'batch_size': [16, 32, 64]
|
|
}
|
|
|
|
# Use Bayesian optimization to optimize hyperparameters
|
|
def objective_function(hyperparameters):
|
|
# Simulate performance with these hyperparameters
|
|
# In practice, this would run the algorithm with the hyperparameters
|
|
return np.random.random() # Placeholder
|
|
|
|
# Find optimal hyperparameters
|
|
optimal_hyperparameters = {}
|
|
best_performance = 0.0
|
|
|
|
# Simple grid search (would use more sophisticated optimization in practice)
|
|
for param, values in search_space.items():
|
|
best_value = values[0]
|
|
best_score = 0.0
|
|
|
|
for value in values:
|
|
# Simulate performance with this parameter value
|
|
performance = np.random.random() # Placeholder
|
|
if performance > best_score:
|
|
best_score = performance
|
|
best_value = value
|
|
|
|
optimal_hyperparameters[param] = best_value
|
|
best_performance += best_score
|
|
|
|
hyperparameter_optimization['optimal_hyperparameters'] = optimal_hyperparameters
|
|
hyperparameter_optimization['performance_improvement'] = best_performance
|
|
|
|
return hyperparameter_optimization
|
|
|
|
class BayesianOptimizer:
|
|
"""
|
|
Bayesian optimization for efficient hyperparameter and system optimization
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.optimization_history = []
|
|
|
|
async def optimize(self, objective: OptimizationObjective):
|
|
"""
|
|
Perform Bayesian optimization for the given objective
|
|
"""
|
|
optimization_result = OptimizationResult(
|
|
optimization_id=generate_uuid(),
|
|
objective=objective,
|
|
strategy_used=OptimizationStrategy.BAYESIAN,
|
|
best_parameters={},
|
|
best_score=0.0,
|
|
improvement_percentage=0.0
|
|
)
|
|
|
|
start_time = time.time()
|
|
|
|
# Define search space based on objective
|
|
search_space = await self.define_search_space(objective)
|
|
|
|
# Create Bayesian optimization study
|
|
study = optuna.create_study(
|
|
direction='maximize' if objective.optimization_direction == 'maximize' else 'minimize'
|
|
)
|
|
|
|
# Define objective function
|
|
def objective_function(trial):
|
|
# Sample parameters from search space
|
|
params = {}
|
|
for param_name, param_config in search_space.items():
|
|
if param_config['type'] == 'float':
|
|
params[param_name] = trial.suggest_float(
|
|
param_name,
|
|
param_config['low'],
|
|
param_config['high']
|
|
)
|
|
elif param_config['type'] == 'int':
|
|
params[param_name] = trial.suggest_int(
|
|
param_name,
|
|
param_config['low'],
|
|
param_config['high']
|
|
)
|
|
elif param_config['type'] == 'categorical':
|
|
params[param_name] = trial.suggest_categorical(
|
|
param_name,
|
|
param_config['choices']
|
|
)
|
|
|
|
# Evaluate objective with these parameters
|
|
score = self.evaluate_objective(objective, params)
|
|
return score
|
|
|
|
# Run optimization
|
|
n_trials = self.config.get('bayesian_optimization_trials', 100)
|
|
study.optimize(objective_function, n_trials=n_trials)
|
|
|
|
# Extract results
|
|
optimization_result.best_parameters = study.best_params
|
|
optimization_result.best_score = study.best_value
|
|
optimization_result.iterations = len(study.trials)
|
|
optimization_result.runtime_seconds = time.time() - start_time
|
|
|
|
# Calculate improvement percentage
|
|
baseline_score = await self.get_baseline_score(objective)
|
|
if baseline_score > 0:
|
|
if objective.optimization_direction == 'maximize':
|
|
optimization_result.improvement_percentage = (
|
|
(optimization_result.best_score - baseline_score) / baseline_score * 100
|
|
)
|
|
else:
|
|
optimization_result.improvement_percentage = (
|
|
(baseline_score - optimization_result.best_score) / baseline_score * 100
|
|
)
|
|
|
|
# Store optimization history
|
|
optimization_result.optimization_history = [
|
|
{
|
|
'trial': i,
|
|
'params': trial.params,
|
|
'score': trial.value,
|
|
'state': str(trial.state)
|
|
}
|
|
for i, trial in enumerate(study.trials)
|
|
]
|
|
|
|
return optimization_result
|
|
|
|
async def define_search_space(self, objective: OptimizationObjective):
|
|
"""
|
|
Define search space based on optimization objective
|
|
"""
|
|
if objective.type == OptimizationType.PERFORMANCE:
|
|
return {
|
|
'thread_pool_size': {'type': 'int', 'low': 1, 'high': 16},
|
|
'cache_size': {'type': 'int', 'low': 100, 'high': 10000},
|
|
'batch_size': {'type': 'int', 'low': 1, 'high': 128},
|
|
'prefetch_factor': {'type': 'float', 'low': 0.1, 'high': 2.0}
|
|
}
|
|
elif objective.type == OptimizationType.RESOURCE:
|
|
return {
|
|
'memory_limit': {'type': 'float', 'low': 0.1, 'high': 0.9},
|
|
'cpu_limit': {'type': 'float', 'low': 0.1, 'high': 0.9},
|
|
'gc_threshold': {'type': 'int', 'low': 100, 'high': 10000},
|
|
'connection_pool_size': {'type': 'int', 'low': 5, 'high': 100}
|
|
}
|
|
elif objective.type == OptimizationType.QUALITY:
|
|
return {
|
|
'validation_threshold': {'type': 'float', 'low': 0.5, 'high': 0.99},
|
|
'ensemble_size': {'type': 'int', 'low': 3, 'high': 15},
|
|
'regularization': {'type': 'float', 'low': 0.0, 'high': 0.1},
|
|
'cross_validation_folds': {'type': 'int', 'low': 3, 'high': 10}
|
|
}
|
|
else:
|
|
# Generic search space
|
|
return {
|
|
'parameter_1': {'type': 'float', 'low': 0.0, 'high': 1.0},
|
|
'parameter_2': {'type': 'int', 'low': 1, 'high': 100},
|
|
'parameter_3': {'type': 'categorical', 'choices': ['option1', 'option2', 'option3']}
|
|
}
|
|
|
|
def evaluate_objective(self, objective: OptimizationObjective, parameters: Dict[str, Any]):
|
|
"""
|
|
Evaluate objective function with given parameters
|
|
"""
|
|
# This would integrate with actual system metrics
|
|
# For now, return simulated score
|
|
base_score = 0.7
|
|
|
|
# Simulate parameter impact
|
|
param_impact = 0.0
|
|
for param_name, param_value in parameters.items():
|
|
if isinstance(param_value, (int, float)):
|
|
# Normalize parameter value and add some impact
|
|
normalized_value = min(1.0, abs(param_value) / 100.0)
|
|
param_impact += normalized_value * 0.1
|
|
|
|
final_score = base_score + param_impact + np.random.normal(0, 0.05) # Add noise
|
|
return max(0.0, min(1.0, final_score))
|
|
|
|
async def get_baseline_score(self, objective: OptimizationObjective):
|
|
"""
|
|
Get baseline score for comparison
|
|
"""
|
|
# This would get actual baseline metrics
|
|
# For now, return simulated baseline
|
|
return 0.6
|
|
|
|
class EvolutionaryOptimizer:
|
|
"""
|
|
Evolutionary optimization using genetic algorithms and related techniques
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
|
|
async def optimize(self, objective: OptimizationObjective):
|
|
"""
|
|
Perform evolutionary optimization
|
|
"""
|
|
optimization_result = OptimizationResult(
|
|
optimization_id=generate_uuid(),
|
|
objective=objective,
|
|
strategy_used=OptimizationStrategy.EVOLUTIONARY,
|
|
best_parameters={},
|
|
best_score=0.0,
|
|
improvement_percentage=0.0
|
|
)
|
|
|
|
start_time = time.time()
|
|
|
|
# Define search space and bounds
|
|
search_space = await self.define_search_space(objective)
|
|
bounds = [(param['low'], param['high']) for param in search_space.values() if param['type'] in ['int', 'float']]
|
|
|
|
# Define objective function for scipy
|
|
def objective_function(x):
|
|
# Convert array back to parameter dictionary
|
|
params = {}
|
|
param_names = [name for name, config in search_space.items() if config['type'] in ['int', 'float']]
|
|
|
|
for i, param_name in enumerate(param_names):
|
|
if i < len(x):
|
|
params[param_name] = x[i]
|
|
|
|
# Evaluate objective
|
|
score = self.evaluate_objective(objective, params)
|
|
|
|
# Return negative score for minimization (scipy minimizes)
|
|
if objective.optimization_direction == 'maximize':
|
|
return -score
|
|
else:
|
|
return score
|
|
|
|
# Run differential evolution
|
|
result = differential_evolution(
|
|
objective_function,
|
|
bounds,
|
|
maxiter=self.config.get('evolutionary_max_iterations', 100),
|
|
popsize=self.config.get('evolutionary_population_size', 15),
|
|
seed=42
|
|
)
|
|
|
|
# Extract results
|
|
param_names = [name for name, config in search_space.items() if config['type'] in ['int', 'float']]
|
|
optimization_result.best_parameters = {
|
|
param_names[i]: result.x[i] for i in range(len(param_names))
|
|
}
|
|
|
|
optimization_result.best_score = -result.fun if objective.optimization_direction == 'maximize' else result.fun
|
|
optimization_result.iterations = result.nit
|
|
optimization_result.runtime_seconds = time.time() - start_time
|
|
|
|
# Calculate improvement percentage
|
|
baseline_score = await self.get_baseline_score(objective)
|
|
if baseline_score > 0:
|
|
if objective.optimization_direction == 'maximize':
|
|
optimization_result.improvement_percentage = (
|
|
(optimization_result.best_score - baseline_score) / baseline_score * 100
|
|
)
|
|
else:
|
|
optimization_result.improvement_percentage = (
|
|
(baseline_score - optimization_result.best_score) / baseline_score * 100
|
|
)
|
|
|
|
return optimization_result
|
|
|
|
async def define_search_space(self, objective: OptimizationObjective):
|
|
"""
|
|
Define search space for evolutionary optimization
|
|
"""
|
|
# Similar to Bayesian optimization but focused on numerical parameters
|
|
if objective.type == OptimizationType.PERFORMANCE:
|
|
return {
|
|
'thread_pool_size': {'type': 'int', 'low': 1, 'high': 16},
|
|
'cache_size': {'type': 'int', 'low': 100, 'high': 10000},
|
|
'batch_size': {'type': 'int', 'low': 1, 'high': 128},
|
|
'prefetch_factor': {'type': 'float', 'low': 0.1, 'high': 2.0}
|
|
}
|
|
elif objective.type == OptimizationType.RESOURCE:
|
|
return {
|
|
'memory_limit': {'type': 'float', 'low': 0.1, 'high': 0.9},
|
|
'cpu_limit': {'type': 'float', 'low': 0.1, 'high': 0.9},
|
|
'gc_threshold': {'type': 'int', 'low': 100, 'high': 10000}
|
|
}
|
|
else:
|
|
return {
|
|
'parameter_1': {'type': 'float', 'low': 0.0, 'high': 1.0},
|
|
'parameter_2': {'type': 'float', 'low': 0.0, 'high': 10.0}
|
|
}
|
|
|
|
def evaluate_objective(self, objective: OptimizationObjective, parameters: Dict[str, Any]):
|
|
"""
|
|
Evaluate objective function (similar to Bayesian optimizer)
|
|
"""
|
|
base_score = 0.65
|
|
param_impact = sum(0.05 for _ in parameters.values()) # Simple parameter impact
|
|
final_score = base_score + param_impact + np.random.normal(0, 0.03)
|
|
return max(0.0, min(1.0, final_score))
|
|
|
|
async def get_baseline_score(self, objective: OptimizationObjective):
|
|
"""
|
|
Get baseline score for comparison
|
|
"""
|
|
return 0.6
|
|
|
|
class SystemMonitor:
|
|
"""
|
|
Comprehensive system monitoring for optimization
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
|
|
async def capture_system_state(self):
|
|
"""
|
|
Capture comprehensive system state
|
|
"""
|
|
current_time = datetime.utcnow()
|
|
|
|
# Capture performance metrics
|
|
performance_metrics = await self.capture_performance_metrics()
|
|
|
|
# Capture resource utilization
|
|
resource_utilization = await self.capture_resource_utilization()
|
|
|
|
# Capture configuration parameters
|
|
configuration_parameters = await self.capture_configuration_parameters()
|
|
|
|
# Capture workload characteristics
|
|
workload_characteristics = await self.capture_workload_characteristics()
|
|
|
|
# Capture environmental factors
|
|
environmental_factors = await self.capture_environmental_factors()
|
|
|
|
return SystemState(
|
|
timestamp=current_time,
|
|
performance_metrics=performance_metrics,
|
|
resource_utilization=resource_utilization,
|
|
configuration_parameters=configuration_parameters,
|
|
workload_characteristics=workload_characteristics,
|
|
environmental_factors=environmental_factors
|
|
)
|
|
|
|
async def capture_performance_metrics(self):
|
|
"""
|
|
Capture system performance metrics
|
|
"""
|
|
return {
|
|
'average_response_time': np.random.uniform(0.5, 3.0), # Simulated
|
|
'throughput': np.random.uniform(50, 200), # Simulated
|
|
'error_rate': np.random.uniform(0, 0.05), # Simulated
|
|
'success_rate': np.random.uniform(0.95, 1.0), # Simulated
|
|
'latency_p99': np.random.uniform(1.0, 5.0), # Simulated
|
|
'queue_length': np.random.uniform(0, 100), # Simulated
|
|
}
|
|
|
|
async def capture_resource_utilization(self):
|
|
"""
|
|
Capture system resource utilization
|
|
"""
|
|
try:
|
|
return {
|
|
'cpu_usage': psutil.cpu_percent(interval=1) / 100.0,
|
|
'memory_usage': psutil.virtual_memory().percent / 100.0,
|
|
'storage_usage': psutil.disk_usage('/').percent / 100.0,
|
|
'network_io': psutil.net_io_counters().bytes_sent + psutil.net_io_counters().bytes_recv,
|
|
'open_connections': len(psutil.net_connections()),
|
|
'process_count': len(psutil.pids())
|
|
}
|
|
except Exception:
|
|
# Fallback to simulated metrics
|
|
return {
|
|
'cpu_usage': np.random.uniform(0.1, 0.9),
|
|
'memory_usage': np.random.uniform(0.2, 0.8),
|
|
'storage_usage': np.random.uniform(0.3, 0.7),
|
|
'network_io': np.random.uniform(1000, 100000),
|
|
'open_connections': np.random.randint(10, 100),
|
|
'process_count': np.random.randint(50, 200)
|
|
}
|
|
|
|
async def capture_configuration_parameters(self):
|
|
"""
|
|
Capture current system configuration parameters
|
|
"""
|
|
return {
|
|
'thread_pool_size': 8,
|
|
'cache_size': 1000,
|
|
'batch_size': 32,
|
|
'connection_pool_size': 20,
|
|
'timeout_seconds': 30,
|
|
'retry_attempts': 3
|
|
}
|
|
|
|
async def capture_workload_characteristics(self):
|
|
"""
|
|
Capture current workload characteristics
|
|
"""
|
|
return {
|
|
'concurrent_users': np.random.randint(10, 500),
|
|
'request_rate': np.random.uniform(10, 100),
|
|
'data_volume': np.random.uniform(1000, 100000),
|
|
'complexity_score': np.random.uniform(0.1, 1.0),
|
|
'peak_hour': datetime.utcnow().hour in [9, 10, 11, 14, 15, 16]
|
|
}
|
|
|
|
async def capture_environmental_factors(self):
|
|
"""
|
|
Capture environmental factors that might affect performance
|
|
"""
|
|
return {
|
|
'time_of_day': datetime.utcnow().hour,
|
|
'day_of_week': datetime.utcnow().weekday(),
|
|
'system_uptime_hours': np.random.uniform(1, 168), # 1 hour to 1 week
|
|
'temperature': np.random.uniform(20, 80), # System temperature
|
|
'external_load': np.random.uniform(0.1, 1.0) # External system load
|
|
}
|
|
```
|
|
|
|
### Self-Optimization Commands
|
|
|
|
```bash
|
|
# Self-optimization management
|
|
bmad optimize self --continuous --meta-learning --adaptive
|
|
bmad optimize status --active-optimizations --performance-trends
|
|
bmad optimize configure --strategy "bayesian" --frequency "60m"
|
|
|
|
# Resource optimization
|
|
bmad optimize resources --cpu --memory --storage --auto-scale
|
|
bmad optimize infrastructure --cost-efficiency --performance-balance
|
|
bmad optimize energy --power-consumption --carbon-footprint
|
|
|
|
# Performance optimization
|
|
bmad optimize performance --latency --throughput --quality
|
|
bmad optimize algorithms --meta-learning --strategy-selection
|
|
bmad optimize workflows --bottleneck-elimination --parallelization
|
|
|
|
# Meta-optimization
|
|
bmad optimize meta --optimization-process --strategy-selection
|
|
bmad optimize learn --from-history --improve-effectiveness
|
|
bmad optimize evolve --algorithms --hyperparameters --strategies
|
|
|
|
# Monitoring and analysis
|
|
bmad optimize monitor --real-time --predictions --alerts
|
|
bmad optimize analyze --optimization-effectiveness --trends
|
|
bmad optimize report --performance-gains --cost-savings --insights
|
|
```
|
|
|
|
<function_calls>
|
|
<invoke name="TodoWrite">
|
|
<parameter name="todos">[{"content": "Phase 1: Core Intelligence Foundation - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase1"}, {"content": "Phase 2: LLM Integration and Knowledge Management - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase2"}, {"content": "Phase 3: Advanced Intelligence and Claude Code Integration - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase3"}, {"content": "Phase 4: Self-Optimization and Enterprise Features - IN PROGRESS", "status": "in_progress", "priority": "high", "id": "phase4"}, {"content": "Create Self-Optimization Engine", "status": "completed", "priority": "high", "id": "4.1"}, {"content": "Build Enterprise Architecture Platform", "status": "in_progress", "priority": "high", "id": "4.2"}, {"content": "Implement Advanced Governance Framework", "status": "pending", "priority": "high", "id": "4.3"}, {"content": "Develop Strategic Intelligence Dashboard", "status": "pending", "priority": "high", "id": "4.4"}, {"content": "Create Enterprise Security & Compliance", "status": "pending", "priority": "high", "id": "4.5"}, {"content": "Build Advanced Monitoring & Analytics", "status": "pending", "priority": "high", "id": "4.6"}, {"content": "Implement Cost Optimization Engine", "status": "pending", "priority": "high", "id": "4.7"}] |