470 lines
16 KiB
Markdown
470 lines
16 KiB
Markdown
# BMAD Orchestrator Enhanced
|
|
|
|
## Master Coordination System for Intelligence-Enhanced BMAD
|
|
|
|
The Enhanced BMAD Orchestrator provides centralized coordination of the entire intelligence-enhanced BMAD system, seamlessly integrating with Claude Code to provide comprehensive AI-driven development assistance.
|
|
|
|
### System Architecture Overview
|
|
|
|
#### Enhanced BMAD System Components
|
|
```yaml
|
|
bmad_enhanced_system:
|
|
core_intelligence:
|
|
- bmad_intelligence_core: "Central AI coordinator and decision synthesis"
|
|
- pattern_intelligence: "Advanced pattern recognition and application"
|
|
- decision_engine: "Multi-criteria decision making system"
|
|
|
|
memory_systems:
|
|
- project_memory_manager: "Persistent project memory and learning"
|
|
- solution_repository: "Reusable solution pattern storage"
|
|
- error_prevention_system: "Mistake tracking and prevention"
|
|
|
|
communication_framework:
|
|
- agent_messenger: "Inter-persona communication system"
|
|
- context_synchronizer: "Real-time context sharing"
|
|
|
|
automation_systems:
|
|
- dynamic_rule_engine: "Real-time rule generation and management"
|
|
- bmad_boot_loader: "Intelligent system initialization"
|
|
|
|
integration_layer:
|
|
- persona_intelligence_bridge: "Persona-intelligence integration"
|
|
- claude_code_integration: "Native Claude Code tool enhancement"
|
|
|
|
existing_bmad_components:
|
|
- personas: "Enhanced with intelligence capabilities"
|
|
- tasks: "Augmented with intelligent execution"
|
|
- templates: "Intelligent template selection and adaptation"
|
|
- checklists: "Dynamic, context-aware validation"
|
|
```
|
|
|
|
#### Master Orchestration Flow
|
|
```python
|
|
async def orchestrate_enhanced_bmad_session(user_request, project_context):
|
|
"""
|
|
Master orchestration of enhanced BMAD system for Claude Code
|
|
"""
|
|
# Phase 1: System Initialization
|
|
initialization_result = await initialize_enhanced_bmad(project_context)
|
|
|
|
if not initialization_result.success:
|
|
return await handle_initialization_failure(initialization_result)
|
|
|
|
# Phase 2: Request Analysis and Planning
|
|
request_analysis = await analyze_user_request_intelligently(
|
|
user_request,
|
|
project_context,
|
|
initialization_result.active_systems
|
|
)
|
|
|
|
# Phase 3: Optimal Strategy Selection
|
|
execution_strategy = await select_optimal_execution_strategy(
|
|
request_analysis,
|
|
initialization_result.available_capabilities
|
|
)
|
|
|
|
# Phase 4: Intelligent Execution
|
|
execution_result = await execute_with_intelligence_coordination(
|
|
execution_strategy,
|
|
initialization_result.active_systems
|
|
)
|
|
|
|
# Phase 5: Learning and Memory Update
|
|
learning_result = await update_system_learning(
|
|
user_request,
|
|
execution_result,
|
|
project_context
|
|
)
|
|
|
|
return {
|
|
'execution_result': execution_result,
|
|
'learning_applied': learning_result,
|
|
'system_state': get_enhanced_system_state(),
|
|
'recommendations': generate_next_step_recommendations(execution_result)
|
|
}
|
|
|
|
async def initialize_enhanced_bmad(project_context):
|
|
"""
|
|
Initialize the complete enhanced BMAD system
|
|
"""
|
|
initialization_sequence = {
|
|
'boot_system': await execute_intelligent_boot(project_context),
|
|
'intelligence_core': await initialize_intelligence_systems(),
|
|
'memory_systems': await initialize_memory_systems(project_context),
|
|
'persona_integration': await initialize_persona_intelligence_integration(project_context),
|
|
'rule_systems': await initialize_dynamic_rule_systems(project_context),
|
|
'communication': await initialize_communication_systems()
|
|
}
|
|
|
|
# Validate all systems are operational
|
|
system_validation = await validate_system_integration(initialization_sequence)
|
|
|
|
return {
|
|
'success': system_validation.all_systems_operational,
|
|
'active_systems': initialization_sequence,
|
|
'available_capabilities': extract_available_capabilities(initialization_sequence),
|
|
'system_health': system_validation.health_report
|
|
}
|
|
```
|
|
|
|
### Intelligent Request Processing
|
|
|
|
#### Advanced Request Analysis
|
|
```python
|
|
async def analyze_user_request_intelligently(user_request, project_context, active_systems):
|
|
"""
|
|
Intelligently analyze user request using all available intelligence systems
|
|
"""
|
|
# Parse request using pattern intelligence
|
|
request_patterns = await active_systems['intelligence_core']['pattern_intelligence'].analyze_request(
|
|
user_request
|
|
)
|
|
|
|
# Search for similar past requests in memory
|
|
similar_experiences = await active_systems['memory_systems']['project_memory'].find_similar_requests(
|
|
user_request,
|
|
project_context
|
|
)
|
|
|
|
# Classify request type and complexity
|
|
request_classification = await classify_request_comprehensively(
|
|
user_request,
|
|
request_patterns,
|
|
similar_experiences
|
|
)
|
|
|
|
# Identify required personas and capabilities
|
|
required_capabilities = await identify_required_capabilities(
|
|
request_classification,
|
|
project_context,
|
|
active_systems
|
|
)
|
|
|
|
# Assess potential risks and challenges
|
|
risk_assessment = await assess_request_risks(
|
|
request_classification,
|
|
similar_experiences,
|
|
active_systems['memory_systems']['error_prevention']
|
|
)
|
|
|
|
return {
|
|
'original_request': user_request,
|
|
'request_patterns': request_patterns,
|
|
'classification': request_classification,
|
|
'similar_experiences': similar_experiences,
|
|
'required_capabilities': required_capabilities,
|
|
'risk_assessment': risk_assessment,
|
|
'complexity_score': calculate_complexity_score(request_classification, risk_assessment)
|
|
}
|
|
|
|
async def select_optimal_execution_strategy(request_analysis, available_capabilities):
|
|
"""
|
|
Select the optimal execution strategy based on intelligent analysis
|
|
"""
|
|
# Generate potential execution strategies
|
|
strategy_options = await generate_execution_strategies(
|
|
request_analysis,
|
|
available_capabilities
|
|
)
|
|
|
|
# Evaluate each strategy using decision engine
|
|
strategy_evaluations = []
|
|
for strategy in strategy_options:
|
|
evaluation = await evaluate_execution_strategy(
|
|
strategy,
|
|
request_analysis,
|
|
available_capabilities
|
|
)
|
|
strategy_evaluations.append({
|
|
'strategy': strategy,
|
|
'evaluation': evaluation
|
|
})
|
|
|
|
# Select optimal strategy
|
|
optimal_strategy = select_best_strategy(strategy_evaluations)
|
|
|
|
# Enhance strategy with intelligence insights
|
|
enhanced_strategy = await enhance_strategy_with_intelligence(
|
|
optimal_strategy,
|
|
request_analysis,
|
|
available_capabilities
|
|
)
|
|
|
|
return enhanced_strategy
|
|
```
|
|
|
|
### Coordinated Execution Framework
|
|
|
|
#### Multi-Persona Intelligence Coordination
|
|
```python
|
|
async def execute_with_intelligence_coordination(execution_strategy, active_systems):
|
|
"""
|
|
Execute strategy with coordinated intelligence support
|
|
"""
|
|
execution_session = {
|
|
'session_id': generate_uuid(),
|
|
'strategy': execution_strategy,
|
|
'execution_status': {},
|
|
'intelligence_insights': {},
|
|
'persona_coordination': {},
|
|
'real_time_adaptations': []
|
|
}
|
|
|
|
# Initialize execution monitoring
|
|
execution_monitor = await initialize_execution_monitoring(execution_strategy)
|
|
|
|
# Execute strategy phases with intelligence coordination
|
|
for phase in execution_strategy['phases']:
|
|
phase_result = await execute_phase_with_intelligence(
|
|
phase,
|
|
execution_session,
|
|
active_systems
|
|
)
|
|
|
|
execution_session['execution_status'][phase['id']] = phase_result
|
|
|
|
# Real-time intelligence analysis
|
|
intelligence_analysis = await analyze_phase_execution_intelligence(
|
|
phase_result,
|
|
execution_session,
|
|
active_systems
|
|
)
|
|
|
|
execution_session['intelligence_insights'][phase['id']] = intelligence_analysis
|
|
|
|
# Adaptive strategy modification if needed
|
|
if intelligence_analysis.suggests_adaptation:
|
|
adaptation = await generate_strategy_adaptation(
|
|
intelligence_analysis,
|
|
execution_session,
|
|
active_systems
|
|
)
|
|
|
|
execution_session['real_time_adaptations'].append(adaptation)
|
|
|
|
# Apply adaptation to remaining phases
|
|
execution_strategy = await apply_strategy_adaptation(
|
|
execution_strategy,
|
|
adaptation
|
|
)
|
|
|
|
# Finalize execution with intelligence validation
|
|
final_validation = await validate_execution_with_intelligence(
|
|
execution_session,
|
|
active_systems
|
|
)
|
|
|
|
return {
|
|
'execution_session': execution_session,
|
|
'final_validation': final_validation,
|
|
'intelligence_contributions': extract_intelligence_contributions(execution_session),
|
|
'outcomes_achieved': final_validation.outcomes_achieved
|
|
}
|
|
|
|
async def execute_phase_with_intelligence(phase, execution_session, active_systems):
|
|
"""
|
|
Execute a single phase with full intelligence support
|
|
"""
|
|
# Prepare phase context with intelligence
|
|
phase_context = await prepare_intelligent_phase_context(
|
|
phase,
|
|
execution_session,
|
|
active_systems
|
|
)
|
|
|
|
# Coordinate required personas with intelligence enhancement
|
|
persona_coordination = await coordinate_personas_for_phase(
|
|
phase,
|
|
phase_context,
|
|
active_systems['persona_integration']
|
|
)
|
|
|
|
# Execute phase steps with intelligence monitoring
|
|
step_results = []
|
|
for step in phase['steps']:
|
|
# Pre-step intelligence analysis
|
|
pre_step_analysis = await analyze_step_with_intelligence(
|
|
step,
|
|
phase_context,
|
|
active_systems
|
|
)
|
|
|
|
# Execute step with intelligence enhancement
|
|
step_result = await execute_step_with_intelligence_support(
|
|
step,
|
|
pre_step_analysis,
|
|
persona_coordination,
|
|
active_systems
|
|
)
|
|
|
|
step_results.append(step_result)
|
|
|
|
# Post-step learning
|
|
await learn_from_step_execution(
|
|
step,
|
|
step_result,
|
|
active_systems['memory_systems']
|
|
)
|
|
|
|
return {
|
|
'phase_id': phase['id'],
|
|
'phase_context': phase_context,
|
|
'persona_coordination': persona_coordination,
|
|
'step_results': step_results,
|
|
'phase_outcome': synthesize_phase_outcome(step_results),
|
|
'intelligence_insights': extract_phase_intelligence_insights(step_results)
|
|
}
|
|
```
|
|
|
|
### Enhanced Claude Code Integration
|
|
|
|
#### Intelligent Tool Enhancement
|
|
```python
|
|
async def enhance_claude_code_tools_with_intelligence(active_systems):
|
|
"""
|
|
Enhance all Claude Code tools with intelligence capabilities
|
|
"""
|
|
enhanced_tools = {
|
|
'read': create_intelligence_enhanced_read(active_systems),
|
|
'write': create_intelligence_enhanced_write(active_systems),
|
|
'edit': create_intelligence_enhanced_edit(active_systems),
|
|
'multi_edit': create_intelligence_enhanced_multi_edit(active_systems),
|
|
'bash': create_intelligence_enhanced_bash(active_systems),
|
|
'grep': create_intelligence_enhanced_grep(active_systems),
|
|
'glob': create_intelligence_enhanced_glob(active_systems)
|
|
}
|
|
|
|
return enhanced_tools
|
|
|
|
async def intelligence_enhanced_claude_operation(tool_name, tool_args, active_systems):
|
|
"""
|
|
Execute Claude Code operation with full intelligence enhancement
|
|
"""
|
|
# Pre-operation intelligence analysis
|
|
pre_analysis = await analyze_operation_with_intelligence(
|
|
tool_name,
|
|
tool_args,
|
|
active_systems
|
|
)
|
|
|
|
# Apply intelligence-based optimizations
|
|
optimized_args = await optimize_operation_args(
|
|
tool_args,
|
|
pre_analysis,
|
|
active_systems
|
|
)
|
|
|
|
# Execute with error prevention
|
|
execution_result = await execute_with_error_prevention(
|
|
tool_name,
|
|
optimized_args,
|
|
active_systems['memory_systems']['error_prevention']
|
|
)
|
|
|
|
# Post-operation learning and memory update
|
|
await update_operation_memory(
|
|
tool_name,
|
|
optimized_args,
|
|
execution_result,
|
|
active_systems['memory_systems']
|
|
)
|
|
|
|
# Generate intelligence insights for user
|
|
intelligence_insights = await generate_operation_insights(
|
|
execution_result,
|
|
pre_analysis,
|
|
active_systems
|
|
)
|
|
|
|
return {
|
|
'operation_result': execution_result,
|
|
'intelligence_insights': intelligence_insights,
|
|
'optimizations_applied': pre_analysis.optimizations_suggested,
|
|
'learning_captured': True
|
|
}
|
|
```
|
|
|
|
### System Health and Optimization
|
|
|
|
#### Continuous System Improvement
|
|
```python
|
|
async def monitor_and_optimize_enhanced_system():
|
|
"""
|
|
Continuously monitor and optimize the enhanced BMAD system
|
|
"""
|
|
monitoring_loop = SystemMonitoringLoop()
|
|
|
|
async def optimization_cycle():
|
|
while True:
|
|
# Collect system performance metrics
|
|
performance_metrics = await collect_system_performance_metrics()
|
|
|
|
# Analyze intelligence system effectiveness
|
|
intelligence_effectiveness = await analyze_intelligence_effectiveness()
|
|
|
|
# Identify optimization opportunities
|
|
optimization_opportunities = await identify_system_optimizations(
|
|
performance_metrics,
|
|
intelligence_effectiveness
|
|
)
|
|
|
|
# Apply optimizations
|
|
for optimization in optimization_opportunities:
|
|
await apply_system_optimization(optimization)
|
|
|
|
# Update system learning
|
|
await update_system_wide_learning()
|
|
|
|
await asyncio.sleep(300) # Optimize every 5 minutes
|
|
|
|
await optimization_cycle()
|
|
|
|
async def generate_system_enhancement_recommendations():
|
|
"""
|
|
Generate recommendations for further system enhancements
|
|
"""
|
|
# Analyze usage patterns
|
|
usage_analysis = await analyze_system_usage_patterns()
|
|
|
|
# Identify capability gaps
|
|
capability_gaps = await identify_capability_gaps()
|
|
|
|
# Assess user satisfaction and effectiveness
|
|
effectiveness_analysis = await assess_system_effectiveness()
|
|
|
|
# Generate enhancement recommendations
|
|
recommendations = {
|
|
'immediate_improvements': generate_immediate_improvements(usage_analysis),
|
|
'capability_enhancements': generate_capability_enhancements(capability_gaps),
|
|
'user_experience_improvements': generate_ux_improvements(effectiveness_analysis),
|
|
'performance_optimizations': generate_performance_optimizations(usage_analysis)
|
|
}
|
|
|
|
return recommendations
|
|
```
|
|
|
|
### Master Integration Commands
|
|
|
|
```bash
|
|
# Enhanced BMAD system commands
|
|
bmad enhanced init --full-intelligence --project-context "current"
|
|
bmad enhanced status --detailed --show-intelligence-health
|
|
bmad enhanced optimize --all-systems --based-on-usage
|
|
|
|
# Intelligent request processing
|
|
bmad request analyze --intelligent "implement user authentication"
|
|
bmad request execute --with-intelligence --strategy "optimal"
|
|
bmad request learn --from-outcome --update-patterns
|
|
|
|
# System coordination and monitoring
|
|
bmad orchestrate --coordinate-personas --with-intelligence
|
|
bmad monitor --system-health --intelligence-effectiveness
|
|
bmad enhance --recommend-improvements --based-on-analytics
|
|
|
|
# Integration validation and testing
|
|
bmad validate --full-system --intelligence-integration
|
|
bmad test --intelligence-workflows --all-personas
|
|
bmad report --system-effectiveness --intelligence-contributions
|
|
```
|
|
|
|
This Enhanced BMAD Orchestrator transforms Claude Code into a comprehensive, intelligent development environment that seamlessly coordinates multiple AI personas, applies learned patterns, prevents errors, and continuously improves its capabilities based on experience and outcomes. |