BMAD-METHOD/bmad-system/bmad-orchestrator-enhanced.md

470 lines
16 KiB
Markdown

# BMAD Orchestrator Enhanced
## Master Coordination System for Intelligence-Enhanced BMAD
The Enhanced BMAD Orchestrator provides centralized coordination of the entire intelligence-enhanced BMAD system, seamlessly integrating with Claude Code to provide comprehensive AI-driven development assistance.
### System Architecture Overview
#### Enhanced BMAD System Components
```yaml
bmad_enhanced_system:
core_intelligence:
- bmad_intelligence_core: "Central AI coordinator and decision synthesis"
- pattern_intelligence: "Advanced pattern recognition and application"
- decision_engine: "Multi-criteria decision making system"
memory_systems:
- project_memory_manager: "Persistent project memory and learning"
- solution_repository: "Reusable solution pattern storage"
- error_prevention_system: "Mistake tracking and prevention"
communication_framework:
- agent_messenger: "Inter-persona communication system"
- context_synchronizer: "Real-time context sharing"
automation_systems:
- dynamic_rule_engine: "Real-time rule generation and management"
- bmad_boot_loader: "Intelligent system initialization"
integration_layer:
- persona_intelligence_bridge: "Persona-intelligence integration"
- claude_code_integration: "Native Claude Code tool enhancement"
existing_bmad_components:
- personas: "Enhanced with intelligence capabilities"
- tasks: "Augmented with intelligent execution"
- templates: "Intelligent template selection and adaptation"
- checklists: "Dynamic, context-aware validation"
```
#### Master Orchestration Flow
```python
async def orchestrate_enhanced_bmad_session(user_request, project_context):
"""
Master orchestration of enhanced BMAD system for Claude Code
"""
# Phase 1: System Initialization
initialization_result = await initialize_enhanced_bmad(project_context)
if not initialization_result.success:
return await handle_initialization_failure(initialization_result)
# Phase 2: Request Analysis and Planning
request_analysis = await analyze_user_request_intelligently(
user_request,
project_context,
initialization_result.active_systems
)
# Phase 3: Optimal Strategy Selection
execution_strategy = await select_optimal_execution_strategy(
request_analysis,
initialization_result.available_capabilities
)
# Phase 4: Intelligent Execution
execution_result = await execute_with_intelligence_coordination(
execution_strategy,
initialization_result.active_systems
)
# Phase 5: Learning and Memory Update
learning_result = await update_system_learning(
user_request,
execution_result,
project_context
)
return {
'execution_result': execution_result,
'learning_applied': learning_result,
'system_state': get_enhanced_system_state(),
'recommendations': generate_next_step_recommendations(execution_result)
}
async def initialize_enhanced_bmad(project_context):
"""
Initialize the complete enhanced BMAD system
"""
initialization_sequence = {
'boot_system': await execute_intelligent_boot(project_context),
'intelligence_core': await initialize_intelligence_systems(),
'memory_systems': await initialize_memory_systems(project_context),
'persona_integration': await initialize_persona_intelligence_integration(project_context),
'rule_systems': await initialize_dynamic_rule_systems(project_context),
'communication': await initialize_communication_systems()
}
# Validate all systems are operational
system_validation = await validate_system_integration(initialization_sequence)
return {
'success': system_validation.all_systems_operational,
'active_systems': initialization_sequence,
'available_capabilities': extract_available_capabilities(initialization_sequence),
'system_health': system_validation.health_report
}
```
### Intelligent Request Processing
#### Advanced Request Analysis
```python
async def analyze_user_request_intelligently(user_request, project_context, active_systems):
"""
Intelligently analyze user request using all available intelligence systems
"""
# Parse request using pattern intelligence
request_patterns = await active_systems['intelligence_core']['pattern_intelligence'].analyze_request(
user_request
)
# Search for similar past requests in memory
similar_experiences = await active_systems['memory_systems']['project_memory'].find_similar_requests(
user_request,
project_context
)
# Classify request type and complexity
request_classification = await classify_request_comprehensively(
user_request,
request_patterns,
similar_experiences
)
# Identify required personas and capabilities
required_capabilities = await identify_required_capabilities(
request_classification,
project_context,
active_systems
)
# Assess potential risks and challenges
risk_assessment = await assess_request_risks(
request_classification,
similar_experiences,
active_systems['memory_systems']['error_prevention']
)
return {
'original_request': user_request,
'request_patterns': request_patterns,
'classification': request_classification,
'similar_experiences': similar_experiences,
'required_capabilities': required_capabilities,
'risk_assessment': risk_assessment,
'complexity_score': calculate_complexity_score(request_classification, risk_assessment)
}
async def select_optimal_execution_strategy(request_analysis, available_capabilities):
"""
Select the optimal execution strategy based on intelligent analysis
"""
# Generate potential execution strategies
strategy_options = await generate_execution_strategies(
request_analysis,
available_capabilities
)
# Evaluate each strategy using decision engine
strategy_evaluations = []
for strategy in strategy_options:
evaluation = await evaluate_execution_strategy(
strategy,
request_analysis,
available_capabilities
)
strategy_evaluations.append({
'strategy': strategy,
'evaluation': evaluation
})
# Select optimal strategy
optimal_strategy = select_best_strategy(strategy_evaluations)
# Enhance strategy with intelligence insights
enhanced_strategy = await enhance_strategy_with_intelligence(
optimal_strategy,
request_analysis,
available_capabilities
)
return enhanced_strategy
```
### Coordinated Execution Framework
#### Multi-Persona Intelligence Coordination
```python
async def execute_with_intelligence_coordination(execution_strategy, active_systems):
"""
Execute strategy with coordinated intelligence support
"""
execution_session = {
'session_id': generate_uuid(),
'strategy': execution_strategy,
'execution_status': {},
'intelligence_insights': {},
'persona_coordination': {},
'real_time_adaptations': []
}
# Initialize execution monitoring
execution_monitor = await initialize_execution_monitoring(execution_strategy)
# Execute strategy phases with intelligence coordination
for phase in execution_strategy['phases']:
phase_result = await execute_phase_with_intelligence(
phase,
execution_session,
active_systems
)
execution_session['execution_status'][phase['id']] = phase_result
# Real-time intelligence analysis
intelligence_analysis = await analyze_phase_execution_intelligence(
phase_result,
execution_session,
active_systems
)
execution_session['intelligence_insights'][phase['id']] = intelligence_analysis
# Adaptive strategy modification if needed
if intelligence_analysis.suggests_adaptation:
adaptation = await generate_strategy_adaptation(
intelligence_analysis,
execution_session,
active_systems
)
execution_session['real_time_adaptations'].append(adaptation)
# Apply adaptation to remaining phases
execution_strategy = await apply_strategy_adaptation(
execution_strategy,
adaptation
)
# Finalize execution with intelligence validation
final_validation = await validate_execution_with_intelligence(
execution_session,
active_systems
)
return {
'execution_session': execution_session,
'final_validation': final_validation,
'intelligence_contributions': extract_intelligence_contributions(execution_session),
'outcomes_achieved': final_validation.outcomes_achieved
}
async def execute_phase_with_intelligence(phase, execution_session, active_systems):
"""
Execute a single phase with full intelligence support
"""
# Prepare phase context with intelligence
phase_context = await prepare_intelligent_phase_context(
phase,
execution_session,
active_systems
)
# Coordinate required personas with intelligence enhancement
persona_coordination = await coordinate_personas_for_phase(
phase,
phase_context,
active_systems['persona_integration']
)
# Execute phase steps with intelligence monitoring
step_results = []
for step in phase['steps']:
# Pre-step intelligence analysis
pre_step_analysis = await analyze_step_with_intelligence(
step,
phase_context,
active_systems
)
# Execute step with intelligence enhancement
step_result = await execute_step_with_intelligence_support(
step,
pre_step_analysis,
persona_coordination,
active_systems
)
step_results.append(step_result)
# Post-step learning
await learn_from_step_execution(
step,
step_result,
active_systems['memory_systems']
)
return {
'phase_id': phase['id'],
'phase_context': phase_context,
'persona_coordination': persona_coordination,
'step_results': step_results,
'phase_outcome': synthesize_phase_outcome(step_results),
'intelligence_insights': extract_phase_intelligence_insights(step_results)
}
```
### Enhanced Claude Code Integration
#### Intelligent Tool Enhancement
```python
async def enhance_claude_code_tools_with_intelligence(active_systems):
"""
Enhance all Claude Code tools with intelligence capabilities
"""
enhanced_tools = {
'read': create_intelligence_enhanced_read(active_systems),
'write': create_intelligence_enhanced_write(active_systems),
'edit': create_intelligence_enhanced_edit(active_systems),
'multi_edit': create_intelligence_enhanced_multi_edit(active_systems),
'bash': create_intelligence_enhanced_bash(active_systems),
'grep': create_intelligence_enhanced_grep(active_systems),
'glob': create_intelligence_enhanced_glob(active_systems)
}
return enhanced_tools
async def intelligence_enhanced_claude_operation(tool_name, tool_args, active_systems):
"""
Execute Claude Code operation with full intelligence enhancement
"""
# Pre-operation intelligence analysis
pre_analysis = await analyze_operation_with_intelligence(
tool_name,
tool_args,
active_systems
)
# Apply intelligence-based optimizations
optimized_args = await optimize_operation_args(
tool_args,
pre_analysis,
active_systems
)
# Execute with error prevention
execution_result = await execute_with_error_prevention(
tool_name,
optimized_args,
active_systems['memory_systems']['error_prevention']
)
# Post-operation learning and memory update
await update_operation_memory(
tool_name,
optimized_args,
execution_result,
active_systems['memory_systems']
)
# Generate intelligence insights for user
intelligence_insights = await generate_operation_insights(
execution_result,
pre_analysis,
active_systems
)
return {
'operation_result': execution_result,
'intelligence_insights': intelligence_insights,
'optimizations_applied': pre_analysis.optimizations_suggested,
'learning_captured': True
}
```
### System Health and Optimization
#### Continuous System Improvement
```python
async def monitor_and_optimize_enhanced_system():
"""
Continuously monitor and optimize the enhanced BMAD system
"""
monitoring_loop = SystemMonitoringLoop()
async def optimization_cycle():
while True:
# Collect system performance metrics
performance_metrics = await collect_system_performance_metrics()
# Analyze intelligence system effectiveness
intelligence_effectiveness = await analyze_intelligence_effectiveness()
# Identify optimization opportunities
optimization_opportunities = await identify_system_optimizations(
performance_metrics,
intelligence_effectiveness
)
# Apply optimizations
for optimization in optimization_opportunities:
await apply_system_optimization(optimization)
# Update system learning
await update_system_wide_learning()
await asyncio.sleep(300) # Optimize every 5 minutes
await optimization_cycle()
async def generate_system_enhancement_recommendations():
"""
Generate recommendations for further system enhancements
"""
# Analyze usage patterns
usage_analysis = await analyze_system_usage_patterns()
# Identify capability gaps
capability_gaps = await identify_capability_gaps()
# Assess user satisfaction and effectiveness
effectiveness_analysis = await assess_system_effectiveness()
# Generate enhancement recommendations
recommendations = {
'immediate_improvements': generate_immediate_improvements(usage_analysis),
'capability_enhancements': generate_capability_enhancements(capability_gaps),
'user_experience_improvements': generate_ux_improvements(effectiveness_analysis),
'performance_optimizations': generate_performance_optimizations(usage_analysis)
}
return recommendations
```
### Master Integration Commands
```bash
# Enhanced BMAD system commands
bmad enhanced init --full-intelligence --project-context "current"
bmad enhanced status --detailed --show-intelligence-health
bmad enhanced optimize --all-systems --based-on-usage
# Intelligent request processing
bmad request analyze --intelligent "implement user authentication"
bmad request execute --with-intelligence --strategy "optimal"
bmad request learn --from-outcome --update-patterns
# System coordination and monitoring
bmad orchestrate --coordinate-personas --with-intelligence
bmad monitor --system-health --intelligence-effectiveness
bmad enhance --recommend-improvements --based-on-analytics
# Integration validation and testing
bmad validate --full-system --intelligence-integration
bmad test --intelligence-workflows --all-personas
bmad report --system-effectiveness --intelligence-contributions
```
This Enhanced BMAD Orchestrator transforms Claude Code into a comprehensive, intelligent development environment that seamlessly coordinates multiple AI personas, applies learned patterns, prevents errors, and continuously improves its capabilities based on experience and outcomes.