862 lines
37 KiB
Markdown
862 lines
37 KiB
Markdown
# Intelligent Automation Framework
|
|
|
|
## Context-Aware and Adaptive Automation for Enhanced BMAD System
|
|
|
|
The Intelligent Automation Framework provides sophisticated automation capabilities that can intelligently automate development tasks, workflows, and processes based on context, patterns, learned behaviors, and safety considerations.
|
|
|
|
### Automation Architecture
|
|
|
|
#### Comprehensive Automation Framework
|
|
```yaml
|
|
intelligent_automation_architecture:
|
|
automation_levels:
|
|
task_level_automation:
|
|
- simple_task_automation: "Automate individual development tasks"
|
|
- repetitive_operation_automation: "Automate repetitive operations"
|
|
- data_processing_automation: "Automate data processing tasks"
|
|
- file_management_automation: "Automate file operations and management"
|
|
- code_formatting_automation: "Automate code formatting and styling"
|
|
|
|
workflow_level_automation:
|
|
- development_workflow_automation: "Automate development workflows"
|
|
- testing_workflow_automation: "Automate testing and validation workflows"
|
|
- deployment_workflow_automation: "Automate deployment and release workflows"
|
|
- maintenance_workflow_automation: "Automate maintenance and monitoring workflows"
|
|
- documentation_workflow_automation: "Automate documentation generation and updates"
|
|
|
|
process_level_automation:
|
|
- project_lifecycle_automation: "Automate project lifecycle management"
|
|
- quality_assurance_automation: "Automate quality assurance processes"
|
|
- continuous_integration_automation: "Automate CI/CD processes"
|
|
- monitoring_alerting_automation: "Automate monitoring and alerting"
|
|
- compliance_automation: "Automate compliance and governance"
|
|
|
|
system_level_automation:
|
|
- infrastructure_automation: "Automate infrastructure provisioning and management"
|
|
- security_automation: "Automate security scanning and remediation"
|
|
- performance_optimization_automation: "Automate performance optimization"
|
|
- disaster_recovery_automation: "Automate backup and disaster recovery"
|
|
- environment_management_automation: "Automate environment setup and teardown"
|
|
|
|
automation_intelligence:
|
|
context_awareness:
|
|
- project_context_awareness: "Understand project context for automation decisions"
|
|
- team_context_awareness: "Consider team preferences and practices"
|
|
- environment_context_awareness: "Adapt automation to different environments"
|
|
- temporal_context_awareness: "Consider timing and deadlines in automation"
|
|
- domain_context_awareness: "Understand business domain for relevant automation"
|
|
|
|
adaptive_automation:
|
|
- feedback_based_adaptation: "Adapt automation based on user feedback"
|
|
- performance_based_adaptation: "Adapt automation based on performance metrics"
|
|
- pattern_based_adaptation: "Adapt automation based on identified patterns"
|
|
- context_based_adaptation: "Adapt automation based on changing context"
|
|
- learning_based_adaptation: "Adapt automation based on accumulated learning"
|
|
|
|
decision_intelligence:
|
|
- automation_candidate_identification: "Identify tasks suitable for automation"
|
|
- automation_priority_determination: "Prioritize automation opportunities"
|
|
- automation_approach_selection: "Select optimal automation approaches"
|
|
- risk_assessment_integration: "Assess risks before automation"
|
|
- cost_benefit_analysis: "Evaluate cost-benefit of automation"
|
|
|
|
safety_mechanisms:
|
|
- human_oversight_integration: "Integrate human oversight where needed"
|
|
- rollback_capability: "Provide rollback for automated actions"
|
|
- validation_checkpoints: "Include validation checkpoints in automation"
|
|
- error_handling_automation: "Automate error detection and handling"
|
|
- safety_constraint_enforcement: "Enforce safety constraints in automation"
|
|
|
|
automation_capabilities:
|
|
code_automation:
|
|
- automated_code_generation: "Generate code based on specifications"
|
|
- automated_code_refactoring: "Refactor code automatically with safety checks"
|
|
- automated_code_review: "Perform automated code reviews and suggestions"
|
|
- automated_testing_generation: "Generate comprehensive test suites"
|
|
- automated_documentation_generation: "Generate and update code documentation"
|
|
|
|
build_deployment_automation:
|
|
- automated_build_processes: "Automate build and compilation processes"
|
|
- automated_testing_execution: "Execute automated test suites"
|
|
- automated_deployment_pipelines: "Deploy applications automatically"
|
|
- automated_environment_provisioning: "Provision and configure environments"
|
|
- automated_rollback_procedures: "Implement automated rollback procedures"
|
|
|
|
quality_automation:
|
|
- automated_quality_assessment: "Assess code and system quality automatically"
|
|
- automated_security_scanning: "Scan for security vulnerabilities"
|
|
- automated_performance_testing: "Execute performance tests and analysis"
|
|
- automated_compliance_checking: "Check compliance with standards and policies"
|
|
- automated_technical_debt_analysis: "Analyze and report technical debt"
|
|
|
|
collaboration_automation:
|
|
- automated_notification_management: "Manage notifications and communications"
|
|
- automated_task_assignment: "Assign tasks based on capabilities and availability"
|
|
- automated_progress_tracking: "Track project progress automatically"
|
|
- automated_reporting_generation: "Generate status and progress reports"
|
|
- automated_meeting_scheduling: "Schedule meetings and coordinate activities"
|
|
```
|
|
|
|
#### Intelligent Automation Implementation
|
|
```python
|
|
import asyncio
|
|
import inspect
|
|
from typing import Dict, List, Any, Optional, Callable, Union
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
import json
|
|
from datetime import datetime, timedelta
|
|
import networkx as nx
|
|
from pathlib import Path
|
|
import subprocess
|
|
import tempfile
|
|
import logging
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
import yaml
|
|
import re
|
|
|
|
class AutomationLevel(Enum):
|
|
TASK = "task"
|
|
WORKFLOW = "workflow"
|
|
PROCESS = "process"
|
|
SYSTEM = "system"
|
|
|
|
class AutomationTrigger(Enum):
|
|
MANUAL = "manual"
|
|
SCHEDULED = "scheduled"
|
|
EVENT_DRIVEN = "event_driven"
|
|
PATTERN_BASED = "pattern_based"
|
|
CONTEXT_DRIVEN = "context_driven"
|
|
|
|
class AutomationStatus(Enum):
|
|
PENDING = "pending"
|
|
RUNNING = "running"
|
|
COMPLETED = "completed"
|
|
FAILED = "failed"
|
|
PAUSED = "paused"
|
|
CANCELLED = "cancelled"
|
|
|
|
@dataclass
|
|
class AutomationTask:
|
|
"""
|
|
Represents an automation task with context and execution details
|
|
"""
|
|
task_id: str
|
|
name: str
|
|
description: str
|
|
automation_level: AutomationLevel
|
|
trigger_type: AutomationTrigger
|
|
context: Dict[str, Any] = field(default_factory=dict)
|
|
prerequisites: List[str] = field(default_factory=list)
|
|
dependencies: List[str] = field(default_factory=list)
|
|
safety_checks: List[str] = field(default_factory=list)
|
|
rollback_strategy: Optional[str] = None
|
|
timeout: Optional[int] = None
|
|
retry_config: Dict[str, Any] = field(default_factory=dict)
|
|
validation_rules: List[str] = field(default_factory=list)
|
|
human_oversight_required: bool = False
|
|
|
|
@dataclass
|
|
class AutomationWorkflow:
|
|
"""
|
|
Represents a complete automation workflow
|
|
"""
|
|
workflow_id: str
|
|
name: str
|
|
description: str
|
|
tasks: List[AutomationTask] = field(default_factory=list)
|
|
execution_strategy: str = "sequential"
|
|
parallel_groups: List[List[str]] = field(default_factory=list)
|
|
conditional_logic: Dict[str, Any] = field(default_factory=dict)
|
|
error_handling: Dict[str, Any] = field(default_factory=dict)
|
|
success_criteria: Dict[str, Any] = field(default_factory=dict)
|
|
|
|
@dataclass
|
|
class AutomationExecution:
|
|
"""
|
|
Tracks automation execution state and results
|
|
"""
|
|
execution_id: str
|
|
workflow_id: str
|
|
start_time: datetime
|
|
end_time: Optional[datetime] = None
|
|
status: AutomationStatus = AutomationStatus.PENDING
|
|
task_results: Dict[str, Any] = field(default_factory=dict)
|
|
execution_context: Dict[str, Any] = field(default_factory=dict)
|
|
performance_metrics: Dict[str, float] = field(default_factory=dict)
|
|
safety_validations: List[Dict[str, Any]] = field(default_factory=list)
|
|
human_interventions: List[Dict[str, Any]] = field(default_factory=list)
|
|
|
|
class IntelligentAutomationFramework:
|
|
"""
|
|
Advanced intelligent automation framework with context-awareness and safety
|
|
"""
|
|
|
|
def __init__(self, claude_code_interface, config=None):
|
|
self.claude_code = claude_code_interface
|
|
self.config = config or {
|
|
'max_concurrent_automations': 5,
|
|
'safety_validation_required': True,
|
|
'human_oversight_threshold': 0.8,
|
|
'automation_timeout': 3600,
|
|
'rollback_enabled': True,
|
|
'learning_enabled': True
|
|
}
|
|
|
|
# Core automation components
|
|
self.task_automator = TaskAutomator(self.claude_code, self.config)
|
|
self.workflow_engine = WorkflowEngine(self.claude_code, self.config)
|
|
self.safety_monitor = SafetyMonitor(self.config)
|
|
self.context_analyzer = ContextAnalyzer(self.config)
|
|
|
|
# Intelligence components
|
|
self.automation_intelligence = AutomationIntelligence(self.config)
|
|
self.decision_engine = AutomationDecisionEngine(self.config)
|
|
self.adaptation_engine = AutomationAdaptationEngine(self.config)
|
|
self.learning_engine = AutomationLearningEngine(self.config)
|
|
|
|
# Safety and oversight
|
|
self.human_oversight = HumanOversightManager(self.config)
|
|
self.rollback_manager = RollbackManager(self.config)
|
|
self.validation_engine = AutomationValidationEngine(self.config)
|
|
|
|
# State management
|
|
self.active_executions = {}
|
|
self.automation_registry = {}
|
|
self.execution_history = []
|
|
|
|
# Performance tracking
|
|
self.performance_tracker = AutomationPerformanceTracker()
|
|
|
|
async def register_automation(self, automation_workflow: AutomationWorkflow):
|
|
"""
|
|
Register an automation workflow with the framework
|
|
"""
|
|
registration_result = {
|
|
'workflow_id': automation_workflow.workflow_id,
|
|
'registration_time': datetime.utcnow(),
|
|
'validation_results': {},
|
|
'optimization_suggestions': [],
|
|
'safety_assessment': {},
|
|
'registered': False
|
|
}
|
|
|
|
# Validate automation workflow
|
|
validation_results = await self.validation_engine.validate_workflow(automation_workflow)
|
|
registration_result['validation_results'] = validation_results
|
|
|
|
if not validation_results.get('valid', False):
|
|
registration_result['error'] = 'Workflow validation failed'
|
|
return registration_result
|
|
|
|
# Assess safety requirements
|
|
safety_assessment = await self.safety_monitor.assess_workflow_safety(automation_workflow)
|
|
registration_result['safety_assessment'] = safety_assessment
|
|
|
|
# Optimize workflow if possible
|
|
optimization_suggestions = await self.automation_intelligence.optimize_workflow(
|
|
automation_workflow
|
|
)
|
|
registration_result['optimization_suggestions'] = optimization_suggestions
|
|
|
|
# Register workflow
|
|
self.automation_registry[automation_workflow.workflow_id] = {
|
|
'workflow': automation_workflow,
|
|
'registration_time': registration_result['registration_time'],
|
|
'validation_results': validation_results,
|
|
'safety_assessment': safety_assessment,
|
|
'execution_count': 0,
|
|
'success_rate': 0.0,
|
|
'average_execution_time': 0.0
|
|
}
|
|
|
|
registration_result['registered'] = True
|
|
return registration_result
|
|
|
|
async def execute_automation(self, workflow_id: str, execution_context=None):
|
|
"""
|
|
Execute a registered automation workflow
|
|
"""
|
|
if workflow_id not in self.automation_registry:
|
|
raise ValueError(f"Automation workflow {workflow_id} not registered")
|
|
|
|
execution = AutomationExecution(
|
|
execution_id=generate_uuid(),
|
|
workflow_id=workflow_id,
|
|
start_time=datetime.utcnow(),
|
|
execution_context=execution_context or {}
|
|
)
|
|
|
|
# Store active execution
|
|
self.active_executions[execution.execution_id] = execution
|
|
|
|
try:
|
|
# Get registered workflow
|
|
workflow_info = self.automation_registry[workflow_id]
|
|
workflow = workflow_info['workflow']
|
|
|
|
# Analyze execution context
|
|
context_analysis = await self.context_analyzer.analyze_execution_context(
|
|
workflow,
|
|
execution_context
|
|
)
|
|
execution.execution_context['context_analysis'] = context_analysis
|
|
|
|
# Perform pre-execution safety checks
|
|
safety_validation = await self.safety_monitor.validate_execution_safety(
|
|
workflow,
|
|
execution
|
|
)
|
|
execution.safety_validations.append(safety_validation)
|
|
|
|
if not safety_validation.get('safe', False):
|
|
execution.status = AutomationStatus.FAILED
|
|
execution.end_time = datetime.utcnow()
|
|
return execution
|
|
|
|
# Determine execution strategy
|
|
execution_strategy = await self.decision_engine.determine_execution_strategy(
|
|
workflow,
|
|
context_analysis
|
|
)
|
|
|
|
# Execute workflow based on strategy
|
|
if execution_strategy == 'sequential':
|
|
execution_result = await self.execute_sequential_workflow(workflow, execution)
|
|
elif execution_strategy == 'parallel':
|
|
execution_result = await self.execute_parallel_workflow(workflow, execution)
|
|
elif execution_strategy == 'adaptive':
|
|
execution_result = await self.execute_adaptive_workflow(workflow, execution)
|
|
else:
|
|
execution_result = await self.execute_intelligent_workflow(workflow, execution)
|
|
|
|
# Update execution with results
|
|
execution.task_results = execution_result.get('task_results', {})
|
|
execution.performance_metrics = execution_result.get('performance_metrics', {})
|
|
execution.status = execution_result.get('status', AutomationStatus.COMPLETED)
|
|
|
|
# Perform post-execution validation
|
|
post_validation = await self.validation_engine.validate_execution_results(
|
|
workflow,
|
|
execution
|
|
)
|
|
execution.safety_validations.append(post_validation)
|
|
|
|
# Learn from execution
|
|
if self.config['learning_enabled']:
|
|
learning_insights = await self.learning_engine.learn_from_execution(
|
|
workflow,
|
|
execution
|
|
)
|
|
execution.execution_context['learning_insights'] = learning_insights
|
|
|
|
# Update workflow statistics
|
|
await self.update_workflow_statistics(workflow_id, execution)
|
|
|
|
except Exception as e:
|
|
execution.status = AutomationStatus.FAILED
|
|
execution.execution_context['error'] = str(e)
|
|
|
|
# Attempt rollback if enabled
|
|
if self.config['rollback_enabled']:
|
|
rollback_result = await self.rollback_manager.rollback_execution(execution)
|
|
execution.execution_context['rollback_result'] = rollback_result
|
|
|
|
finally:
|
|
execution.end_time = datetime.utcnow()
|
|
|
|
# Remove from active executions
|
|
if execution.execution_id in self.active_executions:
|
|
del self.active_executions[execution.execution_id]
|
|
|
|
# Store in history
|
|
self.execution_history.append(execution)
|
|
|
|
# Update performance metrics
|
|
await self.performance_tracker.update_metrics(execution)
|
|
|
|
return execution
|
|
|
|
async def execute_sequential_workflow(self, workflow: AutomationWorkflow, execution: AutomationExecution):
|
|
"""
|
|
Execute workflow tasks sequentially
|
|
"""
|
|
sequential_result = {
|
|
'execution_type': 'sequential',
|
|
'task_results': {},
|
|
'performance_metrics': {},
|
|
'status': AutomationStatus.RUNNING
|
|
}
|
|
|
|
current_context = execution.execution_context.copy()
|
|
|
|
for task in workflow.tasks:
|
|
task_start_time = datetime.utcnow()
|
|
|
|
try:
|
|
# Check prerequisites
|
|
prerequisites_met = await self.check_task_prerequisites(task, current_context)
|
|
if not prerequisites_met:
|
|
raise Exception(f"Prerequisites not met for task {task.task_id}")
|
|
|
|
# Execute task
|
|
task_result = await self.task_automator.execute_task(task, current_context)
|
|
|
|
# Validate task result
|
|
if task.validation_rules:
|
|
validation_result = await self.validation_engine.validate_task_result(
|
|
task,
|
|
task_result
|
|
)
|
|
if not validation_result.get('valid', False):
|
|
raise Exception(f"Task {task.task_id} result validation failed")
|
|
|
|
sequential_result['task_results'][task.task_id] = task_result
|
|
|
|
# Update context with task outputs
|
|
current_context.update(task_result.get('outputs', {}))
|
|
|
|
# Calculate task execution time
|
|
task_duration = (datetime.utcnow() - task_start_time).total_seconds()
|
|
sequential_result['performance_metrics'][f'{task.task_id}_duration'] = task_duration
|
|
|
|
# Check for human oversight requirements
|
|
if task.human_oversight_required:
|
|
oversight_result = await self.human_oversight.request_oversight(
|
|
task,
|
|
task_result,
|
|
current_context
|
|
)
|
|
|
|
if not oversight_result.get('approved', False):
|
|
raise Exception(f"Human oversight rejected task {task.task_id}")
|
|
|
|
execution.human_interventions.append({
|
|
'task_id': task.task_id,
|
|
'oversight_result': oversight_result,
|
|
'timestamp': datetime.utcnow()
|
|
})
|
|
|
|
except Exception as e:
|
|
# Handle task failure
|
|
sequential_result['status'] = AutomationStatus.FAILED
|
|
sequential_result['error'] = f"Task {task.task_id} failed: {str(e)}"
|
|
|
|
# Attempt task-level recovery
|
|
if task.retry_config and task.retry_config.get('enabled', False):
|
|
retry_result = await self.retry_task(task, current_context, str(e))
|
|
if retry_result.get('success', False):
|
|
sequential_result['task_results'][task.task_id] = retry_result
|
|
current_context.update(retry_result.get('outputs', {}))
|
|
continue
|
|
|
|
# If no recovery possible, stop execution
|
|
break
|
|
|
|
if sequential_result['status'] != AutomationStatus.FAILED:
|
|
sequential_result['status'] = AutomationStatus.COMPLETED
|
|
|
|
return sequential_result
|
|
|
|
async def execute_intelligent_workflow(self, workflow: AutomationWorkflow, execution: AutomationExecution):
|
|
"""
|
|
Execute workflow with intelligent adaptation and optimization
|
|
"""
|
|
intelligent_result = {
|
|
'execution_type': 'intelligent',
|
|
'task_results': {},
|
|
'adaptations_made': [],
|
|
'optimizations_applied': [],
|
|
'performance_metrics': {},
|
|
'status': AutomationStatus.RUNNING
|
|
}
|
|
|
|
current_context = execution.execution_context.copy()
|
|
|
|
# Create dynamic execution plan
|
|
execution_plan = await self.create_intelligent_execution_plan(workflow, current_context)
|
|
|
|
for phase in execution_plan['phases']:
|
|
phase_start_time = datetime.utcnow()
|
|
|
|
# Execute tasks in phase (may be parallel or sequential)
|
|
if phase['execution_mode'] == 'parallel':
|
|
phase_result = await self.execute_parallel_task_group(
|
|
phase['tasks'],
|
|
current_context
|
|
)
|
|
else:
|
|
phase_result = await self.execute_sequential_task_group(
|
|
phase['tasks'],
|
|
current_context
|
|
)
|
|
|
|
# Analyze phase results and adapt if necessary
|
|
adaptation_needed = await self.automation_intelligence.analyze_phase_results(
|
|
phase_result,
|
|
execution_plan,
|
|
current_context
|
|
)
|
|
|
|
if adaptation_needed['adapt']:
|
|
adaptation_result = await self.adaptation_engine.adapt_execution_plan(
|
|
execution_plan,
|
|
phase_result,
|
|
adaptation_needed
|
|
)
|
|
intelligent_result['adaptations_made'].append(adaptation_result)
|
|
|
|
# Update execution plan with adaptations
|
|
execution_plan = adaptation_result['updated_plan']
|
|
|
|
# Apply optimizations if beneficial
|
|
optimization_opportunities = await self.automation_intelligence.identify_optimizations(
|
|
phase_result,
|
|
execution_plan,
|
|
current_context
|
|
)
|
|
|
|
for optimization in optimization_opportunities:
|
|
if optimization['benefit_score'] > 0.7: # High benefit threshold
|
|
optimization_result = await self.apply_optimization(optimization, execution_plan)
|
|
intelligent_result['optimizations_applied'].append(optimization_result)
|
|
|
|
# Update context and metrics
|
|
intelligent_result['task_results'].update(phase_result.get('task_results', {}))
|
|
current_context.update(phase_result.get('context_updates', {}))
|
|
|
|
phase_duration = (datetime.utcnow() - phase_start_time).total_seconds()
|
|
intelligent_result['performance_metrics'][f'phase_{phase["id"]}_duration'] = phase_duration
|
|
|
|
intelligent_result['status'] = AutomationStatus.COMPLETED
|
|
return intelligent_result
|
|
|
|
class TaskAutomator:
|
|
"""
|
|
Executes individual automation tasks with intelligence and safety
|
|
"""
|
|
|
|
def __init__(self, claude_code, config):
|
|
self.claude_code = claude_code
|
|
self.config = config
|
|
|
|
async def execute_task(self, task: AutomationTask, context: Dict[str, Any]):
|
|
"""
|
|
Execute a single automation task
|
|
"""
|
|
task_execution = {
|
|
'task_id': task.task_id,
|
|
'start_time': datetime.utcnow(),
|
|
'context': context,
|
|
'outputs': {},
|
|
'execution_steps': [],
|
|
'success': False
|
|
}
|
|
|
|
try:
|
|
# Determine task execution approach
|
|
execution_approach = await self.determine_execution_approach(task, context)
|
|
|
|
# Execute based on automation level
|
|
if task.automation_level == AutomationLevel.TASK:
|
|
result = await self.execute_simple_task(task, context, execution_approach)
|
|
elif task.automation_level == AutomationLevel.WORKFLOW:
|
|
result = await self.execute_workflow_task(task, context, execution_approach)
|
|
elif task.automation_level == AutomationLevel.PROCESS:
|
|
result = await self.execute_process_task(task, context, execution_approach)
|
|
elif task.automation_level == AutomationLevel.SYSTEM:
|
|
result = await self.execute_system_task(task, context, execution_approach)
|
|
else:
|
|
result = await self.execute_generic_task(task, context, execution_approach)
|
|
|
|
task_execution.update(result)
|
|
task_execution['success'] = True
|
|
|
|
except Exception as e:
|
|
task_execution['error'] = str(e)
|
|
task_execution['success'] = False
|
|
|
|
finally:
|
|
task_execution['end_time'] = datetime.utcnow()
|
|
task_execution['duration'] = (
|
|
task_execution['end_time'] - task_execution['start_time']
|
|
).total_seconds()
|
|
|
|
return task_execution
|
|
|
|
async def execute_simple_task(self, task: AutomationTask, context: Dict[str, Any], execution_approach: Dict[str, Any]):
|
|
"""
|
|
Execute simple task automation
|
|
"""
|
|
simple_result = {
|
|
'execution_type': 'simple_task',
|
|
'outputs': {},
|
|
'execution_steps': []
|
|
}
|
|
|
|
# Parse task description to determine actions
|
|
task_actions = await self.parse_task_actions(task.description, context)
|
|
|
|
for action in task_actions:
|
|
step_result = await self.execute_task_action(action, context)
|
|
simple_result['execution_steps'].append(step_result)
|
|
simple_result['outputs'].update(step_result.get('outputs', {}))
|
|
|
|
return simple_result
|
|
|
|
async def execute_task_action(self, action: Dict[str, Any], context: Dict[str, Any]):
|
|
"""
|
|
Execute a specific task action
|
|
"""
|
|
action_type = action.get('type')
|
|
action_params = action.get('parameters', {})
|
|
|
|
step_result = {
|
|
'action': action_type,
|
|
'parameters': action_params,
|
|
'start_time': datetime.utcnow(),
|
|
'outputs': {},
|
|
'success': False
|
|
}
|
|
|
|
try:
|
|
if action_type == 'file_operation':
|
|
result = await self.execute_file_operation(action_params, context)
|
|
elif action_type == 'code_generation':
|
|
result = await self.execute_code_generation(action_params, context)
|
|
elif action_type == 'command_execution':
|
|
result = await self.execute_command(action_params, context)
|
|
elif action_type == 'api_call':
|
|
result = await self.execute_api_call(action_params, context)
|
|
elif action_type == 'data_processing':
|
|
result = await self.execute_data_processing(action_params, context)
|
|
else:
|
|
result = await self.execute_generic_action(action_params, context)
|
|
|
|
step_result['outputs'] = result
|
|
step_result['success'] = True
|
|
|
|
except Exception as e:
|
|
step_result['error'] = str(e)
|
|
step_result['success'] = False
|
|
|
|
finally:
|
|
step_result['end_time'] = datetime.utcnow()
|
|
step_result['duration'] = (
|
|
step_result['end_time'] - step_result['start_time']
|
|
).total_seconds()
|
|
|
|
return step_result
|
|
|
|
async def execute_file_operation(self, params: Dict[str, Any], context: Dict[str, Any]):
|
|
"""
|
|
Execute file operations using Claude Code
|
|
"""
|
|
operation = params.get('operation')
|
|
file_path = params.get('file_path')
|
|
|
|
if operation == 'read':
|
|
content = await self.claude_code.read(file_path)
|
|
return {'file_content': content, 'file_path': file_path}
|
|
|
|
elif operation == 'write':
|
|
content = params.get('content')
|
|
await self.claude_code.write(file_path, content)
|
|
return {'file_written': file_path, 'content_length': len(content)}
|
|
|
|
elif operation == 'edit':
|
|
old_content = params.get('old_content')
|
|
new_content = params.get('new_content')
|
|
await self.claude_code.edit(file_path, old_content, new_content)
|
|
return {'file_edited': file_path, 'changes_made': True}
|
|
|
|
elif operation == 'delete':
|
|
# Use bash to delete file safely
|
|
await self.claude_code.bash(f'rm "{file_path}"')
|
|
return {'file_deleted': file_path}
|
|
|
|
else:
|
|
raise ValueError(f"Unknown file operation: {operation}")
|
|
|
|
async def execute_code_generation(self, params: Dict[str, Any], context: Dict[str, Any]):
|
|
"""
|
|
Execute intelligent code generation
|
|
"""
|
|
generation_request = {
|
|
'description': params.get('description'),
|
|
'requirements': params.get('requirements', []),
|
|
'language': params.get('language', 'python'),
|
|
'context': context
|
|
}
|
|
|
|
# Use Claude Code to generate code
|
|
generated_code = await self.claude_code.generate_code(generation_request)
|
|
|
|
# Optionally write to file
|
|
if params.get('output_file'):
|
|
await self.claude_code.write(params['output_file'], generated_code)
|
|
|
|
return {
|
|
'generated_code': generated_code,
|
|
'output_file': params.get('output_file'),
|
|
'code_length': len(generated_code)
|
|
}
|
|
|
|
async def execute_command(self, params: Dict[str, Any], context: Dict[str, Any]):
|
|
"""
|
|
Execute system command using Claude Code bash
|
|
"""
|
|
command = params.get('command')
|
|
timeout = params.get('timeout', 30)
|
|
|
|
# Execute command
|
|
result = await self.claude_code.bash(command, timeout=timeout * 1000) # Convert to ms
|
|
|
|
return {
|
|
'command': command,
|
|
'result': result,
|
|
'success': True
|
|
}
|
|
|
|
class SafetyMonitor:
|
|
"""
|
|
Monitors automation safety and enforces safety constraints
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.safety_rules = self.load_safety_rules()
|
|
|
|
def load_safety_rules(self):
|
|
"""
|
|
Load safety rules for automation
|
|
"""
|
|
return {
|
|
'file_operations': {
|
|
'forbidden_paths': ['/etc', '/usr/bin', '/bin'],
|
|
'require_backup': True,
|
|
'max_file_size': 10000000 # 10MB
|
|
},
|
|
'command_execution': {
|
|
'forbidden_commands': ['rm -rf /', 'dd if=/dev/zero', 'mkfs'],
|
|
'require_confirmation': ['rm', 'mv', 'cp'],
|
|
'timeout_limits': {'default': 300, 'max': 3600}
|
|
},
|
|
'network_operations': {
|
|
'allowed_domains': [],
|
|
'forbidden_ips': ['127.0.0.1', 'localhost'],
|
|
'rate_limits': {'requests_per_minute': 60}
|
|
}
|
|
}
|
|
|
|
async def assess_workflow_safety(self, workflow: AutomationWorkflow):
|
|
"""
|
|
Assess the safety of an automation workflow
|
|
"""
|
|
safety_assessment = {
|
|
'workflow_id': workflow.workflow_id,
|
|
'safety_score': 0.0,
|
|
'risk_factors': [],
|
|
'safety_recommendations': [],
|
|
'requires_human_oversight': False
|
|
}
|
|
|
|
risk_factors = []
|
|
|
|
for task in workflow.tasks:
|
|
task_risks = await self.assess_task_safety(task)
|
|
risk_factors.extend(task_risks)
|
|
|
|
safety_assessment['risk_factors'] = risk_factors
|
|
|
|
# Calculate safety score (0.0 = very risky, 1.0 = very safe)
|
|
if not risk_factors:
|
|
safety_assessment['safety_score'] = 1.0
|
|
else:
|
|
# Calculate based on risk severity
|
|
total_risk = sum(risk['severity'] for risk in risk_factors)
|
|
max_possible_risk = len(risk_factors) * 1.0 # Max severity is 1.0
|
|
safety_assessment['safety_score'] = max(0.0, 1.0 - (total_risk / max_possible_risk))
|
|
|
|
# Determine if human oversight is required
|
|
safety_assessment['requires_human_oversight'] = (
|
|
safety_assessment['safety_score'] < self.config.get('human_oversight_threshold', 0.8)
|
|
)
|
|
|
|
return safety_assessment
|
|
|
|
async def assess_task_safety(self, task: AutomationTask):
|
|
"""
|
|
Assess the safety of a single automation task
|
|
"""
|
|
risk_factors = []
|
|
|
|
# Check for dangerous operations
|
|
if 'delete' in task.description.lower() or 'remove' in task.description.lower():
|
|
risk_factors.append({
|
|
'type': 'destructive_operation',
|
|
'severity': 0.8,
|
|
'description': 'Task involves potentially destructive operations'
|
|
})
|
|
|
|
# Check for system-level operations
|
|
if task.automation_level == AutomationLevel.SYSTEM:
|
|
risk_factors.append({
|
|
'type': 'system_level_automation',
|
|
'severity': 0.6,
|
|
'description': 'System-level automation carries inherent risks'
|
|
})
|
|
|
|
# Check for missing safety checks
|
|
if not task.safety_checks:
|
|
risk_factors.append({
|
|
'type': 'missing_safety_checks',
|
|
'severity': 0.4,
|
|
'description': 'Task lacks explicit safety checks'
|
|
})
|
|
|
|
# Check for missing rollback strategy
|
|
if not task.rollback_strategy:
|
|
risk_factors.append({
|
|
'type': 'no_rollback_strategy',
|
|
'severity': 0.3,
|
|
'description': 'Task lacks rollback strategy'
|
|
})
|
|
|
|
return risk_factors
|
|
```
|
|
|
|
### Automation Commands
|
|
|
|
```bash
|
|
# Automation workflow management
|
|
bmad automate register --workflow "deployment.yaml" --validate-safety
|
|
bmad automate execute --workflow-id "uuid" --context "production"
|
|
bmad automate status --active --show-progress
|
|
|
|
# Task automation
|
|
bmad automate task --type "code-generation" --description "create REST API"
|
|
bmad automate task --type "testing" --target "src/" --comprehensive
|
|
bmad automate task --type "deployment" --environment "staging"
|
|
|
|
# Intelligent automation
|
|
bmad automate intelligent --analyze-context --adaptive-execution
|
|
bmad automate optimize --workflow "ci-cd" --based-on-performance
|
|
bmad automate learn --from-executions --improve-automation
|
|
|
|
# Safety and oversight
|
|
bmad automate safety --assess --workflow "critical-deployment"
|
|
bmad automate rollback --execution-id "uuid" --to-checkpoint "safe-state"
|
|
bmad automate oversight --require-human --for-high-risk-tasks
|
|
|
|
# Automation insights and optimization
|
|
bmad automate analytics --performance --execution-patterns
|
|
bmad automate suggestions --optimization --based-on-history
|
|
bmad automate monitor --active-automations --real-time-alerts
|
|
```
|
|
|
|
This Intelligent Automation Framework provides sophisticated automation capabilities that can intelligently automate development tasks, workflows, and processes while maintaining safety, context-awareness, and adaptive behavior for enhanced development productivity.
|
|
|
|
<function_calls>
|
|
<invoke name="TodoWrite">
|
|
<parameter name="todos">[{"content": "Phase 1: Core Intelligence Foundation - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase1"}, {"content": "Phase 2: LLM Integration and Knowledge Management - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase2"}, {"content": "Phase 3: Advanced Intelligence and Claude Code Integration - IN PROGRESS", "status": "in_progress", "priority": "high", "id": "phase3"}, {"content": "Create Autonomous Development Engine", "status": "completed", "priority": "high", "id": "3.1"}, {"content": "Implement Advanced Code Intelligence", "status": "completed", "priority": "high", "id": "3.2"}, {"content": "Build Self-Improving AI Capabilities", "status": "completed", "priority": "high", "id": "3.3"}, {"content": "Develop Intelligent Automation Framework", "status": "completed", "priority": "high", "id": "3.4"}, {"content": "Create Quality Assurance Automation", "status": "in_progress", "priority": "high", "id": "3.5"}, {"content": "Implement Performance Optimization Engine", "status": "pending", "priority": "high", "id": "3.6"}, {"content": "Build Predictive Development Intelligence", "status": "pending", "priority": "high", "id": "3.7"}, {"content": "Phase 4: Self-Optimization and Enterprise Features", "status": "pending", "priority": "medium", "id": "phase4"}] |