909 lines
38 KiB
Markdown
909 lines
38 KiB
Markdown
# Strategic Intelligence Dashboard
|
|
|
|
## Executive-Level Strategic Intelligence and Decision Support for Enhanced BMAD System
|
|
|
|
The Strategic Intelligence Dashboard provides sophisticated executive-level insights, predictive analytics, and strategic decision support that enable organizations to make data-driven strategic decisions with real-time intelligence, trend analysis, and scenario modeling across all business and technology domains.
|
|
|
|
### Strategic Intelligence Architecture
|
|
|
|
#### Comprehensive Strategic Intelligence Platform
|
|
```yaml
|
|
strategic_intelligence_dashboard:
|
|
intelligence_domains:
|
|
business_intelligence:
|
|
- strategic_kpi_monitoring: "Monitor strategic key performance indicators"
|
|
- business_performance_analytics: "Analyze business performance across dimensions"
|
|
- market_intelligence_integration: "Integrate market intelligence and trends"
|
|
- competitive_analysis_dashboard: "Competitive landscape analysis and positioning"
|
|
- customer_intelligence_insights: "Customer behavior and satisfaction analytics"
|
|
|
|
technology_intelligence:
|
|
- technology_portfolio_analytics: "Analyze technology portfolio and investments"
|
|
- innovation_pipeline_tracking: "Track innovation pipeline and R&D initiatives"
|
|
- technical_debt_strategic_view: "Strategic view of technical debt across organization"
|
|
- architecture_evolution_tracking: "Track architectural evolution and modernization"
|
|
- technology_risk_assessment: "Assess technology risks and mitigation strategies"
|
|
|
|
operational_intelligence:
|
|
- operational_efficiency_metrics: "Monitor operational efficiency and optimization"
|
|
- resource_utilization_analytics: "Analyze resource utilization across organization"
|
|
- process_performance_monitoring: "Monitor process performance and bottlenecks"
|
|
- quality_metrics_dashboard: "Quality metrics and improvement tracking"
|
|
- capacity_planning_intelligence: "Capacity planning and forecasting analytics"
|
|
|
|
financial_intelligence:
|
|
- financial_performance_dashboard: "Financial performance and profitability analysis"
|
|
- cost_optimization_insights: "Cost optimization opportunities and savings"
|
|
- investment_roi_analytics: "Return on investment analysis for initiatives"
|
|
- budget_variance_monitoring: "Budget variance analysis and forecasting"
|
|
- financial_risk_assessment: "Financial risk assessment and mitigation"
|
|
|
|
strategic_planning_intelligence:
|
|
- strategic_goal_tracking: "Track strategic goals and objectives"
|
|
- initiative_portfolio_management: "Manage and track strategic initiatives"
|
|
- scenario_planning_and_modeling: "Scenario planning and what-if analysis"
|
|
- strategic_risk_monitoring: "Monitor strategic risks and opportunities"
|
|
- stakeholder_value_analysis: "Analyze stakeholder value creation and impact"
|
|
|
|
analytics_capabilities:
|
|
predictive_analytics:
|
|
- trend_forecasting: "Forecast business and technology trends"
|
|
- performance_prediction: "Predict future performance based on current data"
|
|
- risk_prediction_modeling: "Predict risks and their potential impact"
|
|
- opportunity_identification: "Identify emerging opportunities and trends"
|
|
- scenario_outcome_prediction: "Predict outcomes of different strategic scenarios"
|
|
|
|
prescriptive_analytics:
|
|
- optimization_recommendations: "Recommend optimization strategies and actions"
|
|
- resource_allocation_optimization: "Optimize resource allocation across initiatives"
|
|
- investment_prioritization: "Prioritize investments based on strategic value"
|
|
- decision_support_recommendations: "Provide recommendations for strategic decisions"
|
|
- action_plan_optimization: "Optimize action plans for strategic initiatives"
|
|
|
|
diagnostic_analytics:
|
|
- root_cause_analysis: "Perform root cause analysis for performance issues"
|
|
- variance_analysis: "Analyze variances from planned performance"
|
|
- correlation_analysis: "Identify correlations between different metrics"
|
|
- impact_analysis: "Analyze impact of decisions and changes"
|
|
- performance_attribution: "Attribute performance to specific factors"
|
|
|
|
descriptive_analytics:
|
|
- performance_benchmarking: "Benchmark performance against industry standards"
|
|
- trend_analysis: "Analyze historical trends and patterns"
|
|
- comparative_analysis: "Compare performance across different dimensions"
|
|
- portfolio_analysis: "Analyze portfolio performance and composition"
|
|
- stakeholder_analysis: "Analyze stakeholder engagement and satisfaction"
|
|
|
|
visualization_capabilities:
|
|
executive_dashboards:
|
|
- ceo_strategic_dashboard: "CEO-level strategic overview dashboard"
|
|
- cto_technology_dashboard: "CTO-level technology and innovation dashboard"
|
|
- cfo_financial_dashboard: "CFO-level financial performance dashboard"
|
|
- coo_operational_dashboard: "COO-level operational efficiency dashboard"
|
|
- board_governance_dashboard: "Board-level governance and risk dashboard"
|
|
|
|
interactive_visualizations:
|
|
- dynamic_charts_and_graphs: "Interactive charts, graphs, and visualizations"
|
|
- drill_down_capabilities: "Drill-down from high-level to detailed views"
|
|
- cross_dimensional_analysis: "Cross-dimensional analysis and filtering"
|
|
- real_time_data_visualization: "Real-time data visualization and updates"
|
|
- mobile_responsive_interfaces: "Mobile-responsive dashboard interfaces"
|
|
|
|
strategic_mapping:
|
|
- strategy_map_visualization: "Visualize strategy maps and objectives"
|
|
- value_chain_analysis_maps: "Value chain analysis and visualization"
|
|
- stakeholder_mapping: "Stakeholder relationship and influence mapping"
|
|
- risk_heat_maps: "Risk heat maps and assessment visualization"
|
|
- opportunity_landscape_maps: "Opportunity landscape and market maps"
|
|
|
|
reporting_and_communication:
|
|
- executive_summary_reports: "Executive summary reports and briefings"
|
|
- board_presentation_materials: "Board presentation materials and slides"
|
|
- stakeholder_communication_packages: "Stakeholder communication packages"
|
|
- regulatory_reporting_dashboards: "Regulatory reporting and compliance dashboards"
|
|
- investor_relations_materials: "Investor relations materials and presentations"
|
|
|
|
decision_support_capabilities:
|
|
scenario_modeling:
|
|
- what_if_analysis: "What-if analysis and scenario modeling"
|
|
- sensitivity_analysis: "Sensitivity analysis for key variables"
|
|
- monte_carlo_simulations: "Monte Carlo simulations for uncertainty modeling"
|
|
- decision_tree_analysis: "Decision tree analysis for complex decisions"
|
|
- optimization_modeling: "Optimization modeling for resource allocation"
|
|
|
|
strategic_planning_support:
|
|
- goal_setting_and_tracking: "Goal setting, tracking, and achievement monitoring"
|
|
- initiative_prioritization: "Initiative prioritization and portfolio management"
|
|
- resource_planning_optimization: "Resource planning and allocation optimization"
|
|
- timeline_and_milestone_planning: "Timeline and milestone planning and tracking"
|
|
- strategic_roadmap_development: "Strategic roadmap development and visualization"
|
|
|
|
risk_and_opportunity_management:
|
|
- risk_assessment_and_monitoring: "Risk assessment, monitoring, and mitigation"
|
|
- opportunity_identification_and_evaluation: "Opportunity identification and evaluation"
|
|
- threat_analysis_and_response: "Threat analysis and response planning"
|
|
- competitive_intelligence_and_response: "Competitive intelligence and response strategies"
|
|
- market_dynamics_analysis: "Market dynamics analysis and strategic positioning"
|
|
```
|
|
|
|
#### Strategic Intelligence Dashboard Implementation
|
|
```python
|
|
import asyncio
|
|
import pandas as pd
|
|
import numpy as np
|
|
import plotly.graph_objects as go
|
|
import plotly.express as px
|
|
from plotly.subplots import make_subplots
|
|
import dash
|
|
from dash import dcc, html, Input, Output, State
|
|
import dash_bootstrap_components as dbc
|
|
from typing import Dict, List, Any, Optional, Tuple, Union
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
from datetime import datetime, timedelta
|
|
import json
|
|
import uuid
|
|
from collections import defaultdict, deque
|
|
import logging
|
|
from abc import ABC, abstractmethod
|
|
import sqlite3
|
|
from sqlalchemy import create_engine
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
|
|
class DashboardLevel(Enum):
|
|
EXECUTIVE = "executive"
|
|
SENIOR_MANAGEMENT = "senior_management"
|
|
OPERATIONAL = "operational"
|
|
DEPARTMENTAL = "departmental"
|
|
PROJECT = "project"
|
|
|
|
class IntelligenceType(Enum):
|
|
BUSINESS = "business"
|
|
TECHNOLOGY = "technology"
|
|
OPERATIONAL = "operational"
|
|
FINANCIAL = "financial"
|
|
STRATEGIC = "strategic"
|
|
COMPETITIVE = "competitive"
|
|
|
|
class AnalyticsType(Enum):
|
|
DESCRIPTIVE = "descriptive"
|
|
DIAGNOSTIC = "diagnostic"
|
|
PREDICTIVE = "predictive"
|
|
PRESCRIPTIVE = "prescriptive"
|
|
|
|
class MetricCategory(Enum):
|
|
KPI = "kpi"
|
|
OKR = "okr"
|
|
PERFORMANCE = "performance"
|
|
RISK = "risk"
|
|
QUALITY = "quality"
|
|
FINANCIAL = "financial"
|
|
|
|
@dataclass
|
|
class StrategicMetric:
|
|
"""
|
|
Represents a strategic metric for dashboard visualization
|
|
"""
|
|
metric_id: str
|
|
name: str
|
|
category: MetricCategory
|
|
intelligence_type: IntelligenceType
|
|
description: str
|
|
current_value: float
|
|
target_value: float
|
|
trend_direction: str # up, down, stable
|
|
unit: str
|
|
frequency: str # daily, weekly, monthly, quarterly
|
|
data_source: str
|
|
calculation_method: str
|
|
thresholds: Dict[str, float] = field(default_factory=dict)
|
|
historical_data: List[Dict[str, Any]] = field(default_factory=list)
|
|
benchmarks: Dict[str, float] = field(default_factory=dict)
|
|
|
|
@dataclass
|
|
class DashboardWidget:
|
|
"""
|
|
Represents a dashboard widget with visualization configuration
|
|
"""
|
|
widget_id: str
|
|
title: str
|
|
widget_type: str # chart, table, metric, map, etc.
|
|
metrics: List[str]
|
|
visualization_config: Dict[str, Any]
|
|
position: Dict[str, int] # row, column, width, height
|
|
access_level: DashboardLevel
|
|
refresh_frequency: int # minutes
|
|
interactive: bool = True
|
|
drill_down_enabled: bool = False
|
|
|
|
@dataclass
|
|
class StrategicInsight:
|
|
"""
|
|
Represents a strategic insight generated from analytics
|
|
"""
|
|
insight_id: str
|
|
title: str
|
|
description: str
|
|
intelligence_type: IntelligenceType
|
|
analytics_type: AnalyticsType
|
|
confidence_level: float
|
|
impact_level: str # high, medium, low
|
|
time_horizon: str # short, medium, long
|
|
recommendations: List[str] = field(default_factory=list)
|
|
supporting_data: Dict[str, Any] = field(default_factory=dict)
|
|
created_timestamp: datetime = field(default_factory=datetime.utcnow)
|
|
|
|
class StrategicIntelligenceDashboard:
|
|
"""
|
|
Comprehensive strategic intelligence dashboard with executive-level insights
|
|
"""
|
|
|
|
def __init__(self, claude_code_interface, config=None):
|
|
self.claude_code = claude_code_interface
|
|
self.config = config or {
|
|
'dashboard_refresh_interval': 300, # 5 minutes
|
|
'data_retention_days': 365,
|
|
'real_time_updates': True,
|
|
'predictive_analytics_enabled': True,
|
|
'mobile_responsive': True,
|
|
'security_enabled': True,
|
|
'export_formats': ['pdf', 'excel', 'powerpoint'],
|
|
'ai_insights_enabled': True
|
|
}
|
|
|
|
# Core dashboard components
|
|
self.data_manager = StrategicDataManager(self.claude_code, self.config)
|
|
self.analytics_engine = StrategicAnalyticsEngine(self.config)
|
|
self.visualization_engine = VisualizationEngine(self.config)
|
|
self.insight_generator = InsightGenerator(self.config)
|
|
|
|
# Specialized intelligence modules
|
|
self.business_intelligence = BusinessIntelligenceModule(self.config)
|
|
self.technology_intelligence = TechnologyIntelligenceModule(self.config)
|
|
self.financial_intelligence = FinancialIntelligenceModule(self.config)
|
|
self.operational_intelligence = OperationalIntelligenceModule(self.config)
|
|
self.competitive_intelligence = CompetitiveIntelligenceModule(self.config)
|
|
|
|
# Dashboard services
|
|
self.dashboard_builder = DashboardBuilder(self.config)
|
|
self.alert_service = StrategicAlertService(self.config)
|
|
self.export_service = DashboardExportService(self.config)
|
|
self.collaboration_service = CollaborationService(self.config)
|
|
|
|
# State management
|
|
self.metric_repository = MetricRepository()
|
|
self.dashboard_configurations = {}
|
|
self.active_sessions = {}
|
|
self.insight_history = []
|
|
|
|
# AI and ML components
|
|
self.ml_engine = MLIntelligenceEngine(self.config)
|
|
self.nlp_processor = NLPProcessor(self.config)
|
|
self.recommendation_engine = RecommendationEngine(self.config)
|
|
|
|
async def create_executive_dashboard(self, executive_role, requirements):
|
|
"""
|
|
Create personalized executive dashboard based on role and requirements
|
|
"""
|
|
dashboard_creation_session = {
|
|
'session_id': generate_uuid(),
|
|
'start_time': datetime.utcnow(),
|
|
'executive_role': executive_role,
|
|
'requirements': requirements,
|
|
'dashboard_config': {},
|
|
'widgets': [],
|
|
'data_sources': {},
|
|
'analytics_config': {}
|
|
}
|
|
|
|
try:
|
|
# Analyze executive requirements
|
|
requirements_analysis = await self.analyze_executive_requirements(
|
|
executive_role,
|
|
requirements
|
|
)
|
|
dashboard_creation_session['requirements_analysis'] = requirements_analysis
|
|
|
|
# Design dashboard layout
|
|
dashboard_layout = await self.design_dashboard_layout(
|
|
executive_role,
|
|
requirements_analysis
|
|
)
|
|
dashboard_creation_session['dashboard_layout'] = dashboard_layout
|
|
|
|
# Configure metrics and KPIs
|
|
metrics_config = await self.configure_executive_metrics(
|
|
executive_role,
|
|
requirements_analysis
|
|
)
|
|
dashboard_creation_session['metrics_config'] = metrics_config
|
|
|
|
# Setup data sources and integrations
|
|
data_sources = await self.setup_dashboard_data_sources(
|
|
metrics_config
|
|
)
|
|
dashboard_creation_session['data_sources'] = data_sources
|
|
|
|
# Create dashboard widgets
|
|
widgets = await self.create_dashboard_widgets(
|
|
dashboard_layout,
|
|
metrics_config,
|
|
data_sources
|
|
)
|
|
dashboard_creation_session['widgets'] = widgets
|
|
|
|
# Configure analytics and insights
|
|
analytics_config = await self.configure_dashboard_analytics(
|
|
executive_role,
|
|
metrics_config
|
|
)
|
|
dashboard_creation_session['analytics_config'] = analytics_config
|
|
|
|
# Setup alerts and notifications
|
|
alert_config = await self.setup_dashboard_alerts(
|
|
executive_role,
|
|
metrics_config
|
|
)
|
|
dashboard_creation_session['alert_config'] = alert_config
|
|
|
|
# Build and deploy dashboard
|
|
dashboard_deployment = await self.dashboard_builder.build_and_deploy_dashboard(
|
|
dashboard_creation_session
|
|
)
|
|
dashboard_creation_session['dashboard_deployment'] = dashboard_deployment
|
|
|
|
except Exception as e:
|
|
dashboard_creation_session['error'] = str(e)
|
|
|
|
finally:
|
|
dashboard_creation_session['end_time'] = datetime.utcnow()
|
|
dashboard_creation_session['creation_duration'] = (
|
|
dashboard_creation_session['end_time'] - dashboard_creation_session['start_time']
|
|
).total_seconds()
|
|
|
|
return dashboard_creation_session
|
|
|
|
async def analyze_executive_requirements(self, executive_role, requirements):
|
|
"""
|
|
Analyze executive requirements to determine dashboard needs
|
|
"""
|
|
requirements_analysis = {
|
|
'primary_focus_areas': [],
|
|
'key_metrics': [],
|
|
'decision_support_needs': [],
|
|
'stakeholder_requirements': {},
|
|
'time_horizons': {},
|
|
'visualization_preferences': {},
|
|
'interaction_patterns': {}
|
|
}
|
|
|
|
# Define role-specific focus areas
|
|
role_focus_mapping = {
|
|
'CEO': [
|
|
'strategic_performance',
|
|
'financial_results',
|
|
'market_position',
|
|
'stakeholder_value',
|
|
'risk_management'
|
|
],
|
|
'CTO': [
|
|
'technology_innovation',
|
|
'technical_debt',
|
|
'architecture_evolution',
|
|
'team_performance',
|
|
'security_posture'
|
|
],
|
|
'CFO': [
|
|
'financial_performance',
|
|
'cost_optimization',
|
|
'investment_roi',
|
|
'budget_management',
|
|
'financial_risk'
|
|
],
|
|
'COO': [
|
|
'operational_efficiency',
|
|
'process_performance',
|
|
'resource_utilization',
|
|
'quality_metrics',
|
|
'capacity_planning'
|
|
]
|
|
}
|
|
|
|
requirements_analysis['primary_focus_areas'] = role_focus_mapping.get(
|
|
executive_role,
|
|
['business_performance', 'strategic_metrics']
|
|
)
|
|
|
|
# Determine key metrics based on role and requirements
|
|
key_metrics = await self.determine_key_metrics(
|
|
executive_role,
|
|
requirements_analysis['primary_focus_areas'],
|
|
requirements
|
|
)
|
|
requirements_analysis['key_metrics'] = key_metrics
|
|
|
|
# Analyze decision support needs
|
|
decision_support_needs = await self.analyze_decision_support_needs(
|
|
executive_role,
|
|
requirements
|
|
)
|
|
requirements_analysis['decision_support_needs'] = decision_support_needs
|
|
|
|
return requirements_analysis
|
|
|
|
async def design_dashboard_layout(self, executive_role, requirements_analysis):
|
|
"""
|
|
Design optimal dashboard layout for executive role
|
|
"""
|
|
dashboard_layout = {
|
|
'layout_type': 'executive_summary',
|
|
'sections': [],
|
|
'navigation': {},
|
|
'responsive_breakpoints': {},
|
|
'accessibility_features': {}
|
|
}
|
|
|
|
# Design sections based on role
|
|
if executive_role == 'CEO':
|
|
sections = [
|
|
{
|
|
'section_id': 'strategic_overview',
|
|
'title': 'Strategic Overview',
|
|
'position': {'row': 1, 'column': 1, 'width': 12, 'height': 4},
|
|
'widget_types': ['kpi_summary', 'strategic_goals_progress']
|
|
},
|
|
{
|
|
'section_id': 'financial_performance',
|
|
'title': 'Financial Performance',
|
|
'position': {'row': 2, 'column': 1, 'width': 6, 'height': 6},
|
|
'widget_types': ['revenue_trends', 'profitability_analysis']
|
|
},
|
|
{
|
|
'section_id': 'market_intelligence',
|
|
'title': 'Market Intelligence',
|
|
'position': {'row': 2, 'column': 7, 'width': 6, 'height': 6},
|
|
'widget_types': ['market_share', 'competitive_position']
|
|
},
|
|
{
|
|
'section_id': 'risk_and_opportunities',
|
|
'title': 'Risk & Opportunities',
|
|
'position': {'row': 3, 'column': 1, 'width': 12, 'height': 4},
|
|
'widget_types': ['risk_heat_map', 'opportunity_pipeline']
|
|
}
|
|
]
|
|
elif executive_role == 'CTO':
|
|
sections = [
|
|
{
|
|
'section_id': 'technology_health',
|
|
'title': 'Technology Health',
|
|
'position': {'row': 1, 'column': 1, 'width': 12, 'height': 4},
|
|
'widget_types': ['system_performance', 'technical_debt_overview']
|
|
},
|
|
{
|
|
'section_id': 'innovation_pipeline',
|
|
'title': 'Innovation Pipeline',
|
|
'position': {'row': 2, 'column': 1, 'width': 6, 'height': 6},
|
|
'widget_types': ['rd_initiatives', 'technology_adoption']
|
|
},
|
|
{
|
|
'section_id': 'team_performance',
|
|
'title': 'Team Performance',
|
|
'position': {'row': 2, 'column': 7, 'width': 6, 'height': 6},
|
|
'widget_types': ['team_velocity', 'skill_development']
|
|
},
|
|
{
|
|
'section_id': 'security_posture',
|
|
'title': 'Security Posture',
|
|
'position': {'row': 3, 'column': 1, 'width': 12, 'height': 4},
|
|
'widget_types': ['security_metrics', 'vulnerability_trends']
|
|
}
|
|
]
|
|
else:
|
|
# Generic executive layout
|
|
sections = [
|
|
{
|
|
'section_id': 'executive_summary',
|
|
'title': 'Executive Summary',
|
|
'position': {'row': 1, 'column': 1, 'width': 12, 'height': 4},
|
|
'widget_types': ['key_metrics', 'performance_trends']
|
|
},
|
|
{
|
|
'section_id': 'performance_details',
|
|
'title': 'Performance Details',
|
|
'position': {'row': 2, 'column': 1, 'width': 12, 'height': 8},
|
|
'widget_types': ['detailed_analytics', 'comparative_analysis']
|
|
}
|
|
]
|
|
|
|
dashboard_layout['sections'] = sections
|
|
|
|
return dashboard_layout
|
|
|
|
async def generate_strategic_insights(self, timeframe="current_quarter"):
|
|
"""
|
|
Generate comprehensive strategic insights from available data
|
|
"""
|
|
insight_generation_session = {
|
|
'session_id': generate_uuid(),
|
|
'start_time': datetime.utcnow(),
|
|
'timeframe': timeframe,
|
|
'insights_generated': [],
|
|
'analytics_performed': {},
|
|
'recommendations': []
|
|
}
|
|
|
|
try:
|
|
# Collect data for analysis
|
|
strategic_data = await self.data_manager.collect_strategic_data(timeframe)
|
|
insight_generation_session['data_collected'] = len(strategic_data)
|
|
|
|
# Perform multi-dimensional analytics
|
|
analytics_results = await self.analytics_engine.perform_comprehensive_analytics(
|
|
strategic_data
|
|
)
|
|
insight_generation_session['analytics_performed'] = analytics_results
|
|
|
|
# Generate business insights
|
|
business_insights = await self.business_intelligence.generate_insights(
|
|
strategic_data,
|
|
analytics_results
|
|
)
|
|
insight_generation_session['insights_generated'].extend(business_insights)
|
|
|
|
# Generate technology insights
|
|
technology_insights = await self.technology_intelligence.generate_insights(
|
|
strategic_data,
|
|
analytics_results
|
|
)
|
|
insight_generation_session['insights_generated'].extend(technology_insights)
|
|
|
|
# Generate financial insights
|
|
financial_insights = await self.financial_intelligence.generate_insights(
|
|
strategic_data,
|
|
analytics_results
|
|
)
|
|
insight_generation_session['insights_generated'].extend(financial_insights)
|
|
|
|
# Generate operational insights
|
|
operational_insights = await self.operational_intelligence.generate_insights(
|
|
strategic_data,
|
|
analytics_results
|
|
)
|
|
insight_generation_session['insights_generated'].extend(operational_insights)
|
|
|
|
# Generate competitive insights
|
|
competitive_insights = await self.competitive_intelligence.generate_insights(
|
|
strategic_data,
|
|
analytics_results
|
|
)
|
|
insight_generation_session['insights_generated'].extend(competitive_insights)
|
|
|
|
# Generate strategic recommendations
|
|
recommendations = await self.recommendation_engine.generate_strategic_recommendations(
|
|
insight_generation_session['insights_generated'],
|
|
analytics_results
|
|
)
|
|
insight_generation_session['recommendations'] = recommendations
|
|
|
|
# Prioritize insights and recommendations
|
|
prioritized_insights = await self.prioritize_insights_and_recommendations(
|
|
insight_generation_session['insights_generated'],
|
|
recommendations
|
|
)
|
|
insight_generation_session['prioritized_insights'] = prioritized_insights
|
|
|
|
except Exception as e:
|
|
insight_generation_session['error'] = str(e)
|
|
|
|
finally:
|
|
insight_generation_session['end_time'] = datetime.utcnow()
|
|
insight_generation_session['generation_duration'] = (
|
|
insight_generation_session['end_time'] - insight_generation_session['start_time']
|
|
).total_seconds()
|
|
|
|
# Store insights in history
|
|
self.insight_history.extend(insight_generation_session.get('insights_generated', []))
|
|
|
|
return insight_generation_session
|
|
|
|
async def create_scenario_analysis(self, scenario_parameters):
|
|
"""
|
|
Create comprehensive scenario analysis with predictive modeling
|
|
"""
|
|
scenario_analysis = {
|
|
'analysis_id': generate_uuid(),
|
|
'timestamp': datetime.utcnow(),
|
|
'scenario_parameters': scenario_parameters,
|
|
'scenarios': [],
|
|
'impact_analysis': {},
|
|
'recommendations': {},
|
|
'risk_assessment': {}
|
|
}
|
|
|
|
# Define scenarios to analyze
|
|
scenarios = await self.define_analysis_scenarios(scenario_parameters)
|
|
|
|
for scenario in scenarios:
|
|
scenario_result = await self.analyze_single_scenario(scenario)
|
|
scenario_analysis['scenarios'].append(scenario_result)
|
|
|
|
# Perform comparative impact analysis
|
|
impact_analysis = await self.perform_scenario_impact_analysis(
|
|
scenario_analysis['scenarios']
|
|
)
|
|
scenario_analysis['impact_analysis'] = impact_analysis
|
|
|
|
# Generate scenario-based recommendations
|
|
recommendations = await self.generate_scenario_recommendations(
|
|
scenario_analysis
|
|
)
|
|
scenario_analysis['recommendations'] = recommendations
|
|
|
|
# Assess risks across scenarios
|
|
risk_assessment = await self.assess_scenario_risks(
|
|
scenario_analysis['scenarios']
|
|
)
|
|
scenario_analysis['risk_assessment'] = risk_assessment
|
|
|
|
return scenario_analysis
|
|
|
|
async def define_analysis_scenarios(self, scenario_parameters):
|
|
"""
|
|
Define scenarios for analysis based on parameters
|
|
"""
|
|
scenarios = []
|
|
|
|
# Base scenario (current trajectory)
|
|
base_scenario = {
|
|
'scenario_id': 'base',
|
|
'name': 'Current Trajectory',
|
|
'description': 'Continuation of current trends and performance',
|
|
'parameters': scenario_parameters.get('base_parameters', {}),
|
|
'probability': 0.6
|
|
}
|
|
scenarios.append(base_scenario)
|
|
|
|
# Optimistic scenario
|
|
optimistic_scenario = {
|
|
'scenario_id': 'optimistic',
|
|
'name': 'Optimistic Growth',
|
|
'description': 'Accelerated growth and positive market conditions',
|
|
'parameters': self.adjust_parameters_optimistic(scenario_parameters),
|
|
'probability': 0.2
|
|
}
|
|
scenarios.append(optimistic_scenario)
|
|
|
|
# Pessimistic scenario
|
|
pessimistic_scenario = {
|
|
'scenario_id': 'pessimistic',
|
|
'name': 'Economic Downturn',
|
|
'description': 'Economic challenges and reduced market conditions',
|
|
'parameters': self.adjust_parameters_pessimistic(scenario_parameters),
|
|
'probability': 0.2
|
|
}
|
|
scenarios.append(pessimistic_scenario)
|
|
|
|
return scenarios
|
|
|
|
def adjust_parameters_optimistic(self, base_parameters):
|
|
"""Adjust parameters for optimistic scenario"""
|
|
optimistic_params = base_parameters.copy()
|
|
|
|
# Increase growth rates by 50%
|
|
if 'growth_rate' in optimistic_params:
|
|
optimistic_params['growth_rate'] *= 1.5
|
|
|
|
# Improve efficiency metrics by 25%
|
|
if 'efficiency_metrics' in optimistic_params:
|
|
for metric in optimistic_params['efficiency_metrics']:
|
|
optimistic_params['efficiency_metrics'][metric] *= 1.25
|
|
|
|
return optimistic_params
|
|
|
|
def adjust_parameters_pessimistic(self, base_parameters):
|
|
"""Adjust parameters for pessimistic scenario"""
|
|
pessimistic_params = base_parameters.copy()
|
|
|
|
# Decrease growth rates by 30%
|
|
if 'growth_rate' in pessimistic_params:
|
|
pessimistic_params['growth_rate'] *= 0.7
|
|
|
|
# Decrease efficiency metrics by 20%
|
|
if 'efficiency_metrics' in pessimistic_params:
|
|
for metric in pessimistic_params['efficiency_metrics']:
|
|
pessimistic_params['efficiency_metrics'][metric] *= 0.8
|
|
|
|
return pessimistic_params
|
|
|
|
class StrategicDataManager:
|
|
"""
|
|
Manages strategic data collection, integration, and processing
|
|
"""
|
|
|
|
def __init__(self, claude_code, config):
|
|
self.claude_code = claude_code
|
|
self.config = config
|
|
self.data_sources = {}
|
|
|
|
async def collect_strategic_data(self, timeframe):
|
|
"""
|
|
Collect comprehensive strategic data from all sources
|
|
"""
|
|
strategic_data = {
|
|
'business_metrics': {},
|
|
'financial_data': {},
|
|
'operational_metrics': {},
|
|
'technology_metrics': {},
|
|
'market_data': {},
|
|
'competitive_data': {},
|
|
'timestamp': datetime.utcnow()
|
|
}
|
|
|
|
# Collect business metrics
|
|
business_metrics = await self.collect_business_metrics(timeframe)
|
|
strategic_data['business_metrics'] = business_metrics
|
|
|
|
# Collect financial data
|
|
financial_data = await self.collect_financial_data(timeframe)
|
|
strategic_data['financial_data'] = financial_data
|
|
|
|
# Collect operational metrics
|
|
operational_metrics = await self.collect_operational_metrics(timeframe)
|
|
strategic_data['operational_metrics'] = operational_metrics
|
|
|
|
# Collect technology metrics
|
|
technology_metrics = await self.collect_technology_metrics(timeframe)
|
|
strategic_data['technology_metrics'] = technology_metrics
|
|
|
|
return strategic_data
|
|
|
|
async def collect_business_metrics(self, timeframe):
|
|
"""
|
|
Collect business performance metrics
|
|
"""
|
|
# This would integrate with actual business systems
|
|
# For now, return simulated data
|
|
return {
|
|
'revenue': 1000000,
|
|
'customer_acquisition': 150,
|
|
'customer_retention': 0.85,
|
|
'market_share': 0.12,
|
|
'brand_sentiment': 0.75
|
|
}
|
|
|
|
async def collect_financial_data(self, timeframe):
|
|
"""
|
|
Collect financial performance data
|
|
"""
|
|
# This would integrate with financial systems
|
|
# For now, return simulated data
|
|
return {
|
|
'revenue': 1000000,
|
|
'costs': 750000,
|
|
'profit_margin': 0.25,
|
|
'roi': 0.18,
|
|
'cash_flow': 150000
|
|
}
|
|
|
|
class StrategicAnalyticsEngine:
|
|
"""
|
|
Performs advanced analytics on strategic data
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
|
|
async def perform_comprehensive_analytics(self, strategic_data):
|
|
"""
|
|
Perform comprehensive analytics on strategic data
|
|
"""
|
|
analytics_results = {
|
|
'trend_analysis': {},
|
|
'correlation_analysis': {},
|
|
'variance_analysis': {},
|
|
'predictive_analysis': {},
|
|
'comparative_analysis': {}
|
|
}
|
|
|
|
# Perform trend analysis
|
|
trend_analysis = await self.perform_trend_analysis(strategic_data)
|
|
analytics_results['trend_analysis'] = trend_analysis
|
|
|
|
# Perform correlation analysis
|
|
correlation_analysis = await self.perform_correlation_analysis(strategic_data)
|
|
analytics_results['correlation_analysis'] = correlation_analysis
|
|
|
|
# Perform predictive analysis
|
|
predictive_analysis = await self.perform_predictive_analysis(strategic_data)
|
|
analytics_results['predictive_analysis'] = predictive_analysis
|
|
|
|
return analytics_results
|
|
|
|
async def perform_trend_analysis(self, strategic_data):
|
|
"""
|
|
Perform trend analysis on strategic metrics
|
|
"""
|
|
# Simplified trend analysis
|
|
trends = {}
|
|
|
|
for category, metrics in strategic_data.items():
|
|
if isinstance(metrics, dict):
|
|
for metric_name, value in metrics.items():
|
|
if isinstance(value, (int, float)):
|
|
# Simulate trend calculation
|
|
trends[f"{category}_{metric_name}"] = {
|
|
'current_value': value,
|
|
'trend_direction': 'up' if value > 0 else 'down',
|
|
'trend_strength': abs(value) / 1000000 if value != 0 else 0
|
|
}
|
|
|
|
return trends
|
|
|
|
def generate_uuid():
|
|
"""Generate a UUID string"""
|
|
return str(uuid.uuid4())
|
|
|
|
# Additional classes would be implemented here:
|
|
# - BusinessIntelligenceModule
|
|
# - TechnologyIntelligenceModule
|
|
# - FinancialIntelligenceModule
|
|
# - OperationalIntelligenceModule
|
|
# - CompetitiveIntelligenceModule
|
|
# - DashboardBuilder
|
|
# - StrategicAlertService
|
|
# - DashboardExportService
|
|
# - CollaborationService
|
|
# - MetricRepository
|
|
# - MLIntelligenceEngine
|
|
# - NLPProcessor
|
|
# - RecommendationEngine
|
|
# - VisualizationEngine
|
|
# - InsightGenerator
|
|
```
|
|
|
|
### Strategic Intelligence Commands
|
|
|
|
```bash
|
|
# Executive dashboard creation and management
|
|
bmad intelligence dashboard --create --executive-role "CEO" --personalized
|
|
bmad intelligence dashboard --configure --metrics "strategic-kpis" --real-time
|
|
bmad intelligence dashboard --deploy --mobile-responsive --secure-access
|
|
|
|
# Strategic analytics and insights
|
|
bmad intelligence analyze --comprehensive --predictive --prescriptive
|
|
bmad intelligence insights --generate --ai-powered --confidence-scoring
|
|
bmad intelligence trends --forecast --scenario-modeling --what-if-analysis
|
|
|
|
# Business intelligence and performance
|
|
bmad intelligence business --performance-analytics --market-intelligence
|
|
bmad intelligence financial --profitability-analysis --cost-optimization
|
|
bmad intelligence operational --efficiency-metrics --capacity-planning
|
|
|
|
# Technology and innovation intelligence
|
|
bmad intelligence technology --portfolio-analytics --innovation-pipeline
|
|
bmad intelligence architecture --evolution-tracking --modernization-insights
|
|
bmad intelligence security --posture-assessment --risk-intelligence
|
|
|
|
# Competitive and market intelligence
|
|
bmad intelligence competitive --landscape-analysis --positioning-insights
|
|
bmad intelligence market --dynamics-analysis --opportunity-identification
|
|
bmad intelligence customer --behavior-analytics --satisfaction-insights
|
|
|
|
# Scenario planning and decision support
|
|
bmad intelligence scenario --planning --monte-carlo --sensitivity-analysis
|
|
bmad intelligence decision --support --optimization-recommendations
|
|
bmad intelligence risk --assessment --mitigation-strategies --monitoring
|
|
|
|
# Reporting and communication
|
|
bmad intelligence report --executive-summary --board-presentation
|
|
bmad intelligence export --pdf --excel --powerpoint --interactive
|
|
bmad intelligence collaborate --stakeholder-sharing --real-time-comments
|
|
|
|
# AI and machine learning insights
|
|
bmad intelligence ai --automated-insights --pattern-recognition
|
|
bmad intelligence ml --predictive-models --anomaly-detection
|
|
bmad intelligence nlp --text-analytics --sentiment-analysis
|
|
```
|
|
|
|
This Strategic Intelligence Dashboard provides sophisticated executive-level insights, predictive analytics, and strategic decision support that enable organizations to make data-driven strategic decisions with real-time intelligence, trend analysis, and scenario modeling across all business and technology domains. |