BMAD-METHOD/docs/system-architecture/system-overview.md

9.9 KiB

BMAD System Overview

This document provides a high-level overview of the BMAD system architecture, focusing on the major components and their interactions.

System Context

```mermaid title="BMAD System Context Diagram" type="diagram" graph TB subgraph "External Systems" USERS[Users] IDE_SYS[IDE Systems] VCS[Version Control] PM_TOOLS[Project Management Tools] COMM[Communication Platforms] end

subgraph "BMAD System"
    BMAD[BMAD Platform]
end

subgraph "Infrastructure"
    CLOUD[Cloud Services]
    DB[Databases]
    STORAGE[File Storage]
    MONITOR[Monitoring]
end

USERS --> BMAD
IDE_SYS --> BMAD
BMAD --> VCS
BMAD --> PM_TOOLS
BMAD --> COMM

BMAD --> CLOUD
BMAD --> DB
BMAD --> STORAGE
BMAD --> MONITOR

```

High-Level Architecture

```mermaid title="BMAD High-Level Architecture" type="diagram" graph TB subgraph "User Interfaces" WEB_UI[Web Interface] IDE_EXT[IDE Extensions] CLI_TOOL[CLI Tools] API_GW[API Gateway] end

subgraph "Core Platform"
    ORCHESTRATOR[Orchestrator Engine]
    
    subgraph "Persona System"
        PM_PERSONA[PM Persona]
        ARCH_PERSONA[Architect Persona]
        UX_PERSONA[UX/UI Persona]
        DEV_PERSONA[Developer Persona]
        BA_PERSONA[Business Analyst]
    end
    
    subgraph "Processing Engines"
        TASK_ENGINE[Task Engine]
        TEMPLATE_ENGINE[Template Engine]
        VALIDATION_ENGINE[Validation Engine]
    end
end

subgraph "Data & Knowledge"
    KNOWLEDGE_BASE[Knowledge Base]
    TEMPLATES[Templates]
    CHECKLISTS[Checklists]
    CONFIG[Configuration]
end

subgraph "External Integrations"
    GIT_INT[Git Integration]
    JIRA_INT[Jira Integration]
    SLACK_INT[Slack Integration]
    AI_SERVICES[AI Services]
end

WEB_UI --> ORCHESTRATOR
IDE_EXT --> ORCHESTRATOR
CLI_TOOL --> ORCHESTRATOR
API_GW --> ORCHESTRATOR

ORCHESTRATOR --> PM_PERSONA
ORCHESTRATOR --> ARCH_PERSONA
ORCHESTRATOR --> UX_PERSONA
ORCHESTRATOR --> DEV_PERSONA
ORCHESTRATOR --> BA_PERSONA

PM_PERSONA --> TASK_ENGINE
ARCH_PERSONA --> TASK_ENGINE
UX_PERSONA --> TASK_ENGINE
DEV_PERSONA --> TASK_ENGINE
BA_PERSONA --> TASK_ENGINE

TASK_ENGINE --> TEMPLATE_ENGINE
TEMPLATE_ENGINE --> VALIDATION_ENGINE

VALIDATION_ENGINE --> KNOWLEDGE_BASE
TEMPLATE_ENGINE --> TEMPLATES
TASK_ENGINE --> CHECKLISTS
ORCHESTRATOR --> CONFIG

ORCHESTRATOR --> GIT_INT
ORCHESTRATOR --> JIRA_INT
ORCHESTRATOR --> SLACK_INT
ORCHESTRATOR --> AI_SERVICES

```

Core Components

1. Orchestrator Engine

Purpose: Central coordination and decision-making hub

Key Responsibilities:

  • Request analysis and routing
  • Persona selection and coordination
  • Context management and state tracking
  • Quality assurance and validation
  • Integration management

Key Features:

  • Natural language processing
  • Context-aware decision making
  • Multi-persona coordination
  • Real-time status tracking
  • Automated quality gates

2. Persona System

Purpose: Specialized AI agents for different domains

Available Personas:

  • Project Manager (PM): Project planning and coordination
  • System Architect: Technical architecture and design
  • UX/UI Designer: User experience and interface design
  • Developer: Code implementation and technical tasks
  • Business Analyst: Requirements and process analysis

Key Features:

  • Domain-specific expertise
  • Consistent behavior patterns
  • Template-driven outputs
  • Context awareness
  • Quality validation

3. Processing Engines

Task Engine

  • Task decomposition and execution
  • Dependency management
  • Progress tracking
  • Error handling and recovery

Template Engine

  • Dynamic content generation
  • Variable substitution
  • Format standardization
  • Multi-format output support

Validation Engine

  • Quality assurance checks
  • Compliance validation
  • Completeness verification
  • Best practice enforcement

4. Data & Knowledge Layer

Knowledge Base

  • Project context and history
  • Best practices and guidelines
  • Domain-specific knowledge
  • Learning and adaptation data

Templates

  • Document templates
  • Code templates
  • Process templates
  • Customizable formats

Checklists

  • Quality assurance checklists
  • Process validation checklists
  • Compliance checklists
  • Custom validation rules

System Interactions

1. User Request Flow

```mermaid title="User Request Processing Flow" type="diagram" sequenceDiagram participant User participant Interface participant Orchestrator participant Persona participant Engine participant Data

User->>Interface: Submit Request
Interface->>Orchestrator: Parse & Route Request
Orchestrator->>Orchestrator: Analyze Context
Orchestrator->>Persona: Select & Activate
Persona->>Engine: Execute Task
Engine->>Data: Retrieve Templates/Data
Data->>Engine: Return Resources
Engine->>Persona: Generate Output
Persona->>Orchestrator: Return Results
Orchestrator->>Interface: Format Response
Interface->>User: Deliver Results

```

2. Multi-Persona Collaboration

```mermaid title="Multi-Persona Collaboration Flow" type="diagram" sequenceDiagram participant Orchestrator participant PM_Persona participant Arch_Persona participant UX_Persona participant Dev_Persona

Orchestrator->>PM_Persona: Create Project Plan
PM_Persona->>Orchestrator: Return Plan
Orchestrator->>Arch_Persona: Design Architecture
Arch_Persona->>Orchestrator: Return Architecture
Orchestrator->>UX_Persona: Create UI Design
UX_Persona->>Orchestrator: Return Design
Orchestrator->>Dev_Persona: Implement Solution
Dev_Persona->>Orchestrator: Return Implementation
Orchestrator->>Orchestrator: Integrate Results

```

Deployment Architecture

1. Environment Types

Development Environment:

  • Local development setup
  • IDE integration focus
  • Rapid iteration support
  • Debug and testing tools

Staging Environment:

  • Production-like configuration
  • Integration testing
  • Performance validation
  • User acceptance testing

Production Environment:

  • High availability setup
  • Scalable infrastructure
  • Monitoring and alerting
  • Backup and recovery

2. Infrastructure Components

```mermaid title="Infrastructure Architecture" type="diagram" graph TB subgraph "Load Balancing" LB[Load Balancer] CDN[Content Delivery Network] end

subgraph "Application Tier"
    APP1[App Server 1]
    APP2[App Server 2]
    APP3[App Server 3]
end

subgraph "Data Tier"
    DB_PRIMARY[Primary Database]
    DB_REPLICA[Read Replica]
    CACHE[Redis Cache]
    SEARCH[Elasticsearch]
end

subgraph "Storage"
    FILE_STORAGE[File Storage]
    BACKUP[Backup Storage]
end

subgraph "Monitoring"
    METRICS[Metrics Collection]
    LOGS[Log Aggregation]
    ALERTS[Alerting System]
end

LB --> APP1
LB --> APP2
LB --> APP3

APP1 --> DB_PRIMARY
APP2 --> DB_REPLICA
APP3 --> CACHE

APP1 --> SEARCH
APP2 --> FILE_STORAGE

DB_PRIMARY --> BACKUP
FILE_STORAGE --> BACKUP

APP1 --> METRICS
APP2 --> LOGS
APP3 --> ALERTS

```

Quality Attributes

1. Performance

  • Response Time: Sub-second for simple operations
  • Throughput: 10,000+ concurrent operations
  • Scalability: Horizontal scaling capability
  • Resource Efficiency: Optimized memory and CPU usage

2. Reliability

  • Availability: 99.9% uptime target
  • Fault Tolerance: Graceful degradation
  • Recovery: Automated failure recovery
  • Data Integrity: ACID compliance where needed

3. Security

  • Authentication: Multi-factor authentication
  • Authorization: Role-based access control
  • Data Protection: Encryption at rest and in transit
  • Audit Trail: Complete activity logging

4. Maintainability

  • Modularity: Loosely coupled components
  • Testability: Comprehensive test coverage
  • Monitoring: Real-time system health monitoring
  • Documentation: Complete technical documentation

Technology Stack

Frontend Technologies

  • Web Interface: React.js, TypeScript, Tailwind CSS
  • IDE Extensions: VS Code API, Language Server Protocol
  • Mobile: Progressive Web App (PWA)

Backend Technologies

  • API Layer: Node.js, Express.js, GraphQL
  • Processing: Python, TensorFlow, OpenAI API
  • Database: PostgreSQL, Redis, Elasticsearch
  • Message Queue: RabbitMQ, Apache Kafka

Infrastructure

  • Cloud Platform: AWS, Azure, or Google Cloud
  • Containerization: Docker, Kubernetes
  • CI/CD: GitHub Actions, Jenkins
  • Monitoring: Prometheus, Grafana, ELK Stack

Next Steps

  1. Deep Dive Components: Review Component Architecture
  2. Understand Data Flow: Study Data Flow Diagrams
  3. Plan Integrations: Examine Integration Architecture
  4. Design Deployment: Review Deployment Architecture

This system overview provides the foundation for understanding the BMAD platform architecture and its key components.

Story 2.2 Progress Update:

  • Created docs/system-architecture/README.md - Architecture documentation overview
  • Created docs/system-architecture/system-overview.md - High-level system architecture
  • In Progress: Need to create remaining architecture documents

Story 2.2 Status: 25% complete (2/8 points)

Should I continue with the remaining architecture documents (component-architecture.md, data-flow-diagrams.md, integration-architecture.md, deployment-architecture.md) to complete Story 2.2?