BMAD-METHOD/bmad-agent/orchestrator/workflow-optimization-engin...

765 lines
23 KiB
Markdown

# BMAD Workflow Optimization Engine
## Overview
The Workflow Optimization Engine analyzes user workflow patterns, suggests optimal persona sequences, identifies efficiency opportunities, and automates routine tasks to maximize productivity and outcomes within the BMAD Method ecosystem.
## Core Architecture
### Workflow Analysis Framework
#### Workflow Pattern Recognition
\```yaml
pattern_recognition_algorithms:
sequence_analysis:
description: "Analyze persona interaction sequences"
algorithms:
- "n_gram_analysis"
- "markov_chain_modeling"
- "sequence_clustering"
- "temporal_pattern_detection"
efficiency_analysis:
description: "Identify workflow efficiency patterns"
metrics:
- "task_completion_time"
- "persona_utilization_rate"
- "context_handoff_efficiency"
- "rework_frequency"
outcome_analysis:
description: "Correlate workflows with outcomes"
factors:
- "deliverable_quality_scores"
- "stakeholder_satisfaction"
- "timeline_adherence"
- "resource_utilization"
bottleneck_detection:
description: "Identify workflow bottlenecks"
indicators:
- "persona_wait_times"
- "context_transfer_delays"
- "decision_point_delays"
- "resource_contention"
```
#### Workflow Classification System
```python
def classify_workflow_pattern(workflow_sequence, context_data, outcome_metrics):
"""
Classify workflow patterns for optimization analysis
"""
# Extract workflow features
workflow_features = extract_workflow_features(workflow_sequence, context_data)
# Classify workflow type
workflow_type = classify_workflow_type(workflow_features)
# Assess workflow complexity
complexity_level = assess_workflow_complexity(workflow_features)
# Identify workflow characteristics
characteristics = identify_workflow_characteristics(workflow_features)
# Calculate efficiency metrics
efficiency_metrics = calculate_efficiency_metrics(workflow_sequence, outcome_metrics)
return {
'workflow_type': workflow_type,
'complexity_level': complexity_level,
'characteristics': characteristics,
'efficiency_metrics': efficiency_metrics,
'optimization_potential': assess_optimization_potential(efficiency_metrics)
}
def extract_workflow_features(workflow_sequence, context_data):
"""Extract key features from workflow for analysis"""
features = {
# Sequence features
'sequence_length': len(workflow_sequence),
'unique_personas': len(set(step.persona for step in workflow_sequence)),
'persona_transitions': count_persona_transitions(workflow_sequence),
'parallel_activities': count_parallel_activities(workflow_sequence),
# Temporal features
'total_duration': calculate_total_duration(workflow_sequence),
'average_step_duration': calculate_average_step_duration(workflow_sequence),
'wait_times': calculate_wait_times(workflow_sequence),
# Context features
'context_complexity': assess_context_complexity(context_data),
'context_handoffs': count_context_handoffs(workflow_sequence),
'context_reuse': calculate_context_reuse(workflow_sequence),
# Collaboration features
'collaboration_intensity': assess_collaboration_intensity(workflow_sequence),
'feedback_loops': count_feedback_loops(workflow_sequence),
'decision_points': count_decision_points(workflow_sequence)
}
return features
```
### Optimization Recommendation Engine
#### Multi-Objective Optimization Algorithm
\```yaml
optimization_objectives:
primary_objectives:
efficiency:
weight: 0.35
metrics: ["time_to_completion", "resource_utilization", "parallel_execution"]
quality:
weight: 0.30
metrics: ["deliverable_quality", "stakeholder_satisfaction", "error_rate"]
cost:
weight: 0.20
metrics: ["resource_cost", "time_cost", "opportunity_cost"]
risk:
weight: 0.15
metrics: ["failure_probability", "rework_risk", "timeline_risk"]
optimization_strategies:
pareto_optimization:
description: "Find pareto-optimal solutions across objectives"
algorithm: "nsga_ii"
weighted_optimization:
description: "Optimize weighted combination of objectives"
algorithm: "genetic_algorithm"
constraint_optimization:
description: "Optimize with hard constraints"
algorithm: "constraint_satisfaction"
```
#### Recommendation Generation Algorithm
```python
def generate_workflow_recommendations(current_workflow, historical_data, constraints=None):
"""
Generate optimized workflow recommendations
"""
# Analyze current workflow
current_analysis = analyze_current_workflow(current_workflow)
# Identify optimization opportunities
opportunities = identify_optimization_opportunities(current_analysis, historical_data)
# Generate alternative workflows
alternative_workflows = generate_alternative_workflows(
current_workflow,
opportunities,
constraints
)
# Evaluate alternatives
evaluated_alternatives = evaluate_workflow_alternatives(
alternative_workflows,
current_analysis
)
# Rank recommendations
ranked_recommendations = rank_recommendations(evaluated_alternatives)
# Generate implementation plans
implementation_plans = generate_implementation_plans(ranked_recommendations)
return {
'recommendations': ranked_recommendations,
'implementation_plans': implementation_plans,
'expected_improvements': calculate_expected_improvements(ranked_recommendations),
'confidence_scores': calculate_confidence_scores(ranked_recommendations)
}
def identify_optimization_opportunities(workflow_analysis, historical_data):
"""Identify specific optimization opportunities"""
opportunities = []
# Sequence optimization opportunities
sequence_opportunities = identify_sequence_optimizations(workflow_analysis, historical_data)
opportunities.extend(sequence_opportunities)
# Parallelization opportunities
parallel_opportunities = identify_parallelization_opportunities(workflow_analysis)
opportunities.extend(parallel_opportunities)
# Automation opportunities
automation_opportunities = identify_automation_opportunities(workflow_analysis)
opportunities.extend(automation_opportunities)
# Resource optimization opportunities
resource_opportunities = identify_resource_optimizations(workflow_analysis)
opportunities.extend(resource_opportunities)
# Context optimization opportunities
context_opportunities = identify_context_optimizations(workflow_analysis)
opportunities.extend(context_opportunities)
return opportunities
```
### Workflow Automation System
#### Automation Rule Engine
\```yaml
automation_rules:
trigger_based_automation:
description: "Automate based on specific triggers"
triggers:
- "workflow_completion"
- "milestone_reached"
- "error_condition"
- "time_threshold"
- "quality_gate"
pattern_based_automation:
description: "Automate based on recognized patterns"
patterns:
- "repetitive_sequences"
- "standard_workflows"
- "routine_handoffs"
- "common_validations"
condition_based_automation:
description: "Automate based on conditions"
conditions:
- "context_availability"
- "persona_availability"
- "resource_availability"
- "quality_thresholds"
learning_based_automation:
description: "Automate based on learned patterns"
learning_sources:
- "user_behavior_patterns"
- "successful_workflow_patterns"
- "optimization_outcomes"
- "feedback_patterns"
```
#### Intelligent Task Automation
```python
def automate_workflow_tasks(workflow_definition, automation_rules, context):
"""
Automatically execute workflow tasks based on rules and context
"""
automated_tasks = []
for task in workflow_definition.tasks:
# Check if task is automatable
if is_task_automatable(task, automation_rules):
# Validate automation conditions
if validate_automation_conditions(task, context):
# Execute automated task
automation_result = execute_automated_task(task, context)
# Validate automation result
if validate_automation_result(automation_result, task):
automated_tasks.append({
'task': task,
'automation_result': automation_result,
'execution_time': automation_result.execution_time,
'quality_score': automation_result.quality_score
})
else:
# Fallback to manual execution
schedule_manual_execution(task, context)
# Update workflow with automated results
updated_workflow = update_workflow_with_automation(workflow_definition, automated_tasks)
# Learn from automation outcomes
learn_from_automation_outcomes(automated_tasks)
return {
'updated_workflow': updated_workflow,
'automated_tasks': automated_tasks,
'automation_rate': len(automated_tasks) / len(workflow_definition.tasks),
'time_saved': calculate_time_saved(automated_tasks)
}
def is_task_automatable(task, automation_rules):
"""Determine if a task can be automated"""
# Check task characteristics
task_characteristics = analyze_task_characteristics(task)
# Check automation rules
applicable_rules = find_applicable_automation_rules(task, automation_rules)
# Assess automation feasibility
feasibility_score = assess_automation_feasibility(task_characteristics, applicable_rules)
# Check automation confidence
confidence_score = calculate_automation_confidence(task, applicable_rules)
return (
feasibility_score >= get_automation_feasibility_threshold() and
confidence_score >= get_automation_confidence_threshold()
)
```
### Workflow Performance Analytics
#### Performance Measurement Framework
\```yaml
performance_metrics:
efficiency_metrics:
time_metrics:
- "total_workflow_time"
- "active_work_time"
- "wait_time"
- "handoff_time"
resource_metrics:
- "persona_utilization_rate"
- "resource_efficiency"
- "parallel_execution_rate"
- "automation_rate"
throughput_metrics:
- "workflows_per_hour"
- "tasks_per_hour"
- "deliverables_per_day"
- "value_delivery_rate"
quality_metrics:
deliverable_quality:
- "quality_score"
- "defect_rate"
- "rework_rate"
- "stakeholder_satisfaction"
process_quality:
- "adherence_to_standards"
- "compliance_rate"
- "best_practice_adoption"
- "continuous_improvement_rate"
predictive_metrics:
leading_indicators:
- "workflow_health_score"
- "bottleneck_probability"
- "success_probability"
- "risk_indicators"
trend_indicators:
- "performance_trend"
- "quality_trend"
- "efficiency_trend"
- "satisfaction_trend"
```
#### Real-time Performance Monitoring
```python
def monitor_workflow_performance(workflow_instance, monitoring_config):
"""
Monitor workflow performance in real-time
"""
# Initialize monitoring
monitoring_session = initialize_monitoring_session(workflow_instance)
# Set up performance collectors
performance_collectors = setup_performance_collectors(monitoring_config)
# Monitor workflow execution
while workflow_instance.is_active():
# Collect performance data
performance_data = collect_performance_data(workflow_instance, performance_collectors)
# Analyze performance in real-time
performance_analysis = analyze_real_time_performance(performance_data)
# Detect performance issues
issues = detect_performance_issues(performance_analysis)
# Generate alerts if necessary
if issues:
generate_performance_alerts(issues, workflow_instance)
# Apply real-time optimizations
optimizations = identify_real_time_optimizations(performance_analysis)
if optimizations:
apply_real_time_optimizations(workflow_instance, optimizations)
# Update performance dashboard
update_performance_dashboard(performance_analysis)
# Wait for next monitoring cycle
wait_for_monitoring_interval(monitoring_config.interval)
# Generate final performance report
final_report = generate_final_performance_report(monitoring_session)
return final_report
```
### Machine Learning and Adaptation
#### Workflow Learning Algorithm
\```yaml
learning_algorithms:
supervised_learning:
description: "Learn from labeled workflow outcomes"
algorithms:
- "random_forest"
- "gradient_boosting"
- "neural_networks"
features:
- "workflow_characteristics"
- "context_features"
- "persona_features"
- "temporal_features"
targets:
- "workflow_success"
- "efficiency_score"
- "quality_score"
- "satisfaction_score"
unsupervised_learning:
description: "Discover patterns in workflow data"
algorithms:
- "clustering"
- "anomaly_detection"
- "association_rules"
- "dimensionality_reduction"
applications:
- "workflow_pattern_discovery"
- "anomaly_detection"
- "feature_engineering"
- "data_exploration"
reinforcement_learning:
description: "Learn optimal workflows through trial and error"
algorithms:
- "q_learning"
- "policy_gradient"
- "actor_critic"
environment:
- "workflow_state_space"
- "action_space"
- "reward_function"
- "transition_dynamics"
```
#### Adaptive Optimization System
```python
def adapt_optimization_strategies(historical_performance, user_feedback, system_metrics):
"""
Adapt optimization strategies based on learning
"""
# Analyze historical performance
performance_patterns = analyze_performance_patterns(historical_performance)
# Process user feedback
feedback_insights = process_user_feedback(user_feedback)
# Analyze system metrics
system_insights = analyze_system_metrics(system_metrics)
# Identify adaptation opportunities
adaptation_opportunities = identify_adaptation_opportunities(
performance_patterns,
feedback_insights,
system_insights
)
# Generate adaptation strategies
adaptation_strategies = generate_adaptation_strategies(adaptation_opportunities)
# Evaluate adaptation strategies
evaluated_strategies = evaluate_adaptation_strategies(adaptation_strategies)
# Select best adaptations
selected_adaptations = select_best_adaptations(evaluated_strategies)
# Implement adaptations
implementation_results = implement_adaptations(selected_adaptations)
# Monitor adaptation impact
monitor_adaptation_impact(implementation_results)
return {
'adaptations_implemented': len(selected_adaptations),
'expected_improvement': calculate_expected_improvement(selected_adaptations),
'implementation_results': implementation_results,
'monitoring_plan': create_monitoring_plan(selected_adaptations)
}
```
### Continuous Improvement Framework
#### Feedback Loop Integration
\```yaml
feedback_loops:
user_feedback:
collection_methods:
- "workflow_satisfaction_surveys"
- "real_time_feedback_widgets"
- "post_workflow_interviews"
- "usage_analytics"
feedback_types:
- "efficiency_feedback"
- "quality_feedback"
- "usability_feedback"
- "suggestion_feedback"
system_feedback:
automated_metrics:
- "performance_metrics"
- "error_rates"
- "resource_utilization"
- "success_rates"
quality_indicators:
- "deliverable_quality_scores"
- "stakeholder_satisfaction"
- "compliance_adherence"
- "best_practice_adoption"
outcome_feedback:
business_metrics:
- "project_success_rate"
- "time_to_market"
- "cost_efficiency"
- "customer_satisfaction"
learning_metrics:
- "knowledge_transfer_effectiveness"
- "skill_development_rate"
- "process_maturity_improvement"
- "innovation_rate"
```
#### Improvement Implementation System
```python
def implement_continuous_improvements(improvement_opportunities, constraints, priorities):
"""
Implement continuous improvements in workflow optimization
"""
# Prioritize improvements
prioritized_improvements = prioritize_improvements(
improvement_opportunities,
constraints,
priorities
)
# Plan improvement implementation
implementation_plan = create_improvement_implementation_plan(prioritized_improvements)
# Execute improvements in phases
implementation_results = []
for phase in implementation_plan.phases:
# Implement phase improvements
phase_results = implement_phase_improvements(phase)
# Validate phase results
validation_results = validate_phase_results(phase_results)
# Measure impact
impact_metrics = measure_improvement_impact(phase_results)
# Decide on next phase
continue_implementation = decide_continue_implementation(
validation_results,
impact_metrics
)
implementation_results.append({
'phase': phase,
'results': phase_results,
'validation': validation_results,
'impact': impact_metrics
})
if not continue_implementation:
break
# Generate improvement report
improvement_report = generate_improvement_report(implementation_results)
# Update optimization models
update_optimization_models(implementation_results)
return {
'implementation_results': implementation_results,
'improvement_report': improvement_report,
'total_impact': calculate_total_impact(implementation_results),
'next_improvement_cycle': schedule_next_improvement_cycle()
}
```
### Performance Optimization and Scaling
#### Scalability Framework
\```yaml
scalability_strategies:
horizontal_scaling:
description: "Scale across multiple instances"
components:
- "distributed_workflow_execution"
- "load_balancing"
- "data_partitioning"
- "cache_distribution"
vertical_scaling:
description: "Scale within single instance"
components:
- "resource_optimization"
- "algorithm_optimization"
- "memory_management"
- "cpu_optimization"
elastic_scaling:
description: "Dynamic scaling based on demand"
components:
- "auto_scaling_policies"
- "demand_prediction"
- "resource_provisioning"
- "cost_optimization"
```
#### Performance Optimization Engine
```python
def optimize_engine_performance(performance_metrics, resource_constraints, optimization_goals):
"""
Optimize workflow optimization engine performance
"""
# Analyze current performance
performance_analysis = analyze_current_performance(performance_metrics)
# Identify performance bottlenecks
bottlenecks = identify_performance_bottlenecks(performance_analysis)
# Generate optimization strategies
optimization_strategies = generate_performance_optimization_strategies(
bottlenecks,
resource_constraints,
optimization_goals
)
# Evaluate optimization strategies
evaluated_strategies = evaluate_optimization_strategies(optimization_strategies)
# Implement optimizations
optimization_results = implement_performance_optimizations(evaluated_strategies)
# Measure optimization impact
impact_metrics = measure_optimization_impact(optimization_results)
# Update performance baselines
update_performance_baselines(impact_metrics)
return {
'optimization_results': optimization_results,
'performance_improvement': calculate_performance_improvement(impact_metrics),
'resource_efficiency_gain': calculate_resource_efficiency_gain(impact_metrics),
'next_optimization_recommendations': generate_next_optimization_recommendations(impact_metrics)
}
```
### Integration and Orchestration
#### Orchestrator Integration Points
\```yaml
integration_points:
persona_management:
integration_type: "bidirectional"
data_exchange:
- "persona_capabilities"
- "persona_availability"
- "persona_performance_metrics"
- "persona_feedback"
context_management:
integration_type: "bidirectional"
data_exchange:
- "workflow_context"
- "context_requirements"
- "context_usage_patterns"
- "context_optimization_opportunities"
intelligent_routing:
integration_type: "collaborative"
data_exchange:
- "routing_decisions"
- "routing_performance"
- "optimization_recommendations"
- "workflow_patterns"
quality_framework:
integration_type: "monitoring"
data_exchange:
- "quality_metrics"
- "quality_standards"
- "quality_violations"
- "quality_improvements"
```
#### End-to-End Workflow Orchestration
```python
def orchestrate_optimized_workflow(workflow_request, optimization_preferences, constraints):
"""
Orchestrate end-to-end optimized workflow execution
"""
# Analyze workflow request
request_analysis = analyze_workflow_request(workflow_request)
# Generate optimized workflow plan
optimized_plan = generate_optimized_workflow_plan(
request_analysis,
optimization_preferences,
constraints
)
# Initialize workflow execution
execution_context = initialize_workflow_execution(optimized_plan)
# Execute workflow with optimization
execution_results = execute_optimized_workflow(execution_context)
# Monitor and adapt during execution
adaptation_results = monitor_and_adapt_workflow(execution_results)
# Collect execution metrics
execution_metrics = collect_execution_metrics(execution_results, adaptation_results)
# Learn from execution
learning_results = learn_from_workflow_execution(execution_metrics)
# Generate workflow report
workflow_report = generate_workflow_execution_report(
execution_results,
adaptation_results,
execution_metrics,
learning_results
)
return {
'workflow_results': execution_results,
'optimization_impact': calculate_optimization_impact(execution_metrics),
'learning_outcomes': learning_results,
'workflow_report': workflow_report,
'recommendations_for_future': generate_future_recommendations(learning_results)
}
```