BMAD-METHOD/bmad-system/cross-project-learning/federated-learning-engine.md

31 KiB

Federated Learning Engine

Privacy-Preserving Cross-Project Learning for Enhanced BMAD System

The Federated Learning Engine enables secure, privacy-preserving learning across multiple projects, teams, and organizations while extracting valuable patterns and insights that benefit the entire development community.

Federated Learning Architecture

Privacy-Preserving Learning Framework

federated_learning_architecture:
  privacy_preservation:
    differential_privacy:
      - noise_injection: "Add calibrated noise to protect individual data points"
      - epsilon_budget: "Manage privacy budget across learning operations"
      - composition_tracking: "Track cumulative privacy loss"
      - adaptive_noise: "Adjust noise based on data sensitivity"
      
    secure_aggregation:
      - homomorphic_encryption: "Encrypt individual contributions"
      - secure_multi_party_computation: "Compute without revealing data"
      - federated_averaging: "Aggregate model updates securely"
      - byzantine_tolerance: "Handle malicious participants"
      
    data_anonymization:
      - k_anonymity: "Ensure minimum group sizes for anonymity"
      - l_diversity: "Ensure diversity in sensitive attributes"
      - t_closeness: "Ensure distribution similarity"
      - synthetic_data_generation: "Generate privacy-preserving synthetic data"
      
    access_control:
      - role_based_access: "Control access based on organizational roles"
      - attribute_based_access: "Fine-grained access control"
      - audit_logging: "Complete audit trail of data access"
      - consent_management: "Manage data usage consent"
      
  learning_domains:
    pattern_aggregation:
      - code_patterns: "Aggregate successful code patterns across projects"
      - architectural_patterns: "Learn architectural decisions and outcomes"
      - workflow_patterns: "Identify effective development workflows"
      - collaboration_patterns: "Understand team collaboration effectiveness"
      
    success_prediction:
      - project_success_factors: "Identify factors leading to project success"
      - technology_adoption_success: "Predict technology adoption outcomes"
      - team_performance_indicators: "Understand team effectiveness patterns"
      - timeline_accuracy_patterns: "Learn from project timeline experiences"
      
    anti_pattern_detection:
      - code_anti_patterns: "Identify patterns leading to technical debt"
      - process_anti_patterns: "Detect ineffective process patterns"
      - communication_anti_patterns: "Identify problematic communication patterns"
      - decision_anti_patterns: "Learn from poor decision outcomes"
      
    trend_analysis:
      - technology_trends: "Track technology adoption and success rates"
      - methodology_effectiveness: "Analyze development methodology outcomes"
      - tool_effectiveness: "Understand tool adoption and satisfaction"
      - skill_development_patterns: "Track team skill development paths"
      
  federation_topology:
    hierarchical_federation:
      - team_level: "Learning within individual teams"
      - project_level: "Learning across projects within organization"
      - organization_level: "Learning across organizational boundaries"
      - ecosystem_level: "Learning across the entire development ecosystem"
      
    peer_to_peer_federation:
      - direct_collaboration: "Direct learning between similar organizations"
      - consortium_learning: "Learning within industry consortiums"
      - open_source_federation: "Learning from open source contributions"
      - academic_partnership: "Collaboration with research institutions"

Federated Learning Implementation

import numpy as np
import hashlib
import cryptography
from cryptography.fernet import Fernet
import torch
import torch.nn as nn
from sklearn.ensemble import IsolationForest
from differential_privacy import LaplaceMechanism, GaussianMechanism
import asyncio
import json
from typing import Dict, List, Any, Optional

class FederatedLearningEngine:
    """
    Privacy-preserving federated learning system for cross-project knowledge aggregation
    """
    
    def __init__(self, privacy_config=None):
        self.privacy_config = privacy_config or {
            'epsilon': 1.0,  # Differential privacy parameter
            'delta': 1e-5,   # Differential privacy parameter
            'noise_multiplier': 1.1,
            'max_grad_norm': 1.0,
            'secure_aggregation': True
        }
        
        # Initialize privacy mechanisms
        self.dp_mechanism = LaplaceMechanism(epsilon=self.privacy_config['epsilon'])
        self.encryption_key = Fernet.generate_key()
        self.encryptor = Fernet(self.encryption_key)
        
        # Federation components
        self.federation_participants = {}
        self.learning_models = {}
        self.aggregation_server = AggregationServer(self.privacy_config)
        self.pattern_aggregator = PatternAggregator()
        
        # Privacy budget tracking
        self.privacy_budget = PrivacyBudgetTracker(
            total_epsilon=self.privacy_config['epsilon'],
            total_delta=self.privacy_config['delta']
        )
    
    async def initialize_federation(self, participant_configs):
        """
        Initialize federated learning with multiple participants
        """
        federation_setup = {
            'federation_id': generate_uuid(),
            'participants': {},
            'learning_objectives': [],
            'privacy_guarantees': {},
            'aggregation_schedule': {}
        }
        
        # Register participants
        for participant_id, config in participant_configs.items():
            participant = await self.register_participant(participant_id, config)
            federation_setup['participants'][participant_id] = participant
        
        # Define learning objectives
        learning_objectives = await self.define_learning_objectives(participant_configs)
        federation_setup['learning_objectives'] = learning_objectives
        
        # Establish privacy guarantees
        privacy_guarantees = await self.establish_privacy_guarantees(participant_configs)
        federation_setup['privacy_guarantees'] = privacy_guarantees
        
        # Setup aggregation schedule
        aggregation_schedule = await self.setup_aggregation_schedule(participant_configs)
        federation_setup['aggregation_schedule'] = aggregation_schedule
        
        return federation_setup
    
    async def register_participant(self, participant_id, config):
        """
        Register a participant in the federated learning network
        """
        participant = {
            'id': participant_id,
            'organization': config.get('organization'),
            'data_characteristics': await self.analyze_participant_data(config),
            'privacy_requirements': config.get('privacy_requirements', {}),
            'contribution_capacity': config.get('contribution_capacity', 'medium'),
            'learning_interests': config.get('learning_interests', []),
            'trust_level': config.get('trust_level', 'standard'),
            'encryption_key': self.generate_participant_key(participant_id)
        }
        
        # Validate participant eligibility
        eligibility = await self.validate_participant_eligibility(participant)
        participant['eligible'] = eligibility
        
        if eligibility['is_eligible']:
            self.federation_participants[participant_id] = participant
            
            # Initialize participant-specific learning models
            await self.initialize_participant_models(participant_id, config)
        
        return participant
    
    async def federated_pattern_learning(self, learning_round_config):
        """
        Execute privacy-preserving pattern learning across federation
        """
        learning_round = {
            'round_id': generate_uuid(),
            'config': learning_round_config,
            'participant_contributions': {},
            'aggregated_patterns': {},
            'privacy_metrics': {},
            'learning_outcomes': {}
        }
        
        # Collect privacy-preserving contributions from participants
        participant_tasks = []
        for participant_id in self.federation_participants:
            task = self.collect_participant_contribution(
                participant_id,
                learning_round_config
            )
            participant_tasks.append(task)
        
        # Execute contribution collection in parallel
        participant_contributions = await asyncio.gather(*participant_tasks)
        
        # Store contributions
        for contribution in participant_contributions:
            learning_round['participant_contributions'][contribution['participant_id']] = contribution
        
        # Secure aggregation of contributions
        aggregated_patterns = await self.secure_pattern_aggregation(
            participant_contributions,
            learning_round_config
        )
        learning_round['aggregated_patterns'] = aggregated_patterns
        
        # Calculate privacy metrics
        privacy_metrics = await self.calculate_privacy_metrics(
            participant_contributions,
            aggregated_patterns
        )
        learning_round['privacy_metrics'] = privacy_metrics
        
        # Derive learning outcomes
        learning_outcomes = await self.derive_learning_outcomes(
            aggregated_patterns,
            learning_round_config
        )
        learning_round['learning_outcomes'] = learning_outcomes
        
        # Distribute learning outcomes to participants
        await self.distribute_learning_outcomes(
            learning_outcomes,
            self.federation_participants
        )
        
        return learning_round
    
    async def collect_participant_contribution(self, participant_id, learning_config):
        """
        Collect privacy-preserving contribution from a participant
        """
        participant = self.federation_participants[participant_id]
        
        contribution = {
            'participant_id': participant_id,
            'contribution_type': learning_config['learning_type'],
            'privacy_preserved_data': {},
            'local_patterns': {},
            'aggregation_metadata': {}
        }
        
        # Extract local patterns with privacy preservation
        if learning_config['learning_type'] == 'code_patterns':
            local_patterns = await self.extract_privacy_preserved_code_patterns(
                participant_id,
                learning_config
            )
        elif learning_config['learning_type'] == 'success_patterns':
            local_patterns = await self.extract_privacy_preserved_success_patterns(
                participant_id,
                learning_config
            )
        elif learning_config['learning_type'] == 'anti_patterns':
            local_patterns = await self.extract_privacy_preserved_anti_patterns(
                participant_id,
                learning_config
            )
        else:
            local_patterns = await self.extract_generic_privacy_preserved_patterns(
                participant_id,
                learning_config
            )
        
        contribution['local_patterns'] = local_patterns
        
        # Apply differential privacy
        dp_patterns = await self.apply_differential_privacy(
            local_patterns,
            participant['privacy_requirements']
        )
        contribution['privacy_preserved_data'] = dp_patterns
        
        # Encrypt contribution for secure transmission
        encrypted_contribution = await self.encrypt_contribution(
            contribution,
            participant['encryption_key']
        )
        
        return encrypted_contribution
    
    async def extract_privacy_preserved_code_patterns(self, participant_id, learning_config):
        """
        Extract code patterns with privacy preservation
        """
        # Get participant's local code data
        local_code_data = await self.get_participant_code_data(participant_id)
        
        privacy_preserved_patterns = {
            'pattern_types': {},
            'frequency_distributions': {},
            'success_correlations': {},
            'anonymized_examples': {}
        }
        
        # Extract pattern types with k-anonymity
        pattern_types = await self.extract_pattern_types_with_kanonymity(
            local_code_data,
            k=learning_config.get('k_anonymity', 5)
        )
        privacy_preserved_patterns['pattern_types'] = pattern_types
        
        # Calculate frequency distributions with differential privacy
        frequency_distributions = await self.calculate_dp_frequency_distributions(
            local_code_data,
            self.privacy_config['epsilon'] / 4  # Budget allocation
        )
        privacy_preserved_patterns['frequency_distributions'] = frequency_distributions
        
        # Analyze success correlations with privacy preservation
        success_correlations = await self.analyze_success_correlations_privately(
            local_code_data,
            self.privacy_config['epsilon'] / 4  # Budget allocation
        )
        privacy_preserved_patterns['success_correlations'] = success_correlations
        
        # Generate anonymized examples
        anonymized_examples = await self.generate_anonymized_code_examples(
            local_code_data,
            learning_config.get('max_examples', 10)
        )
        privacy_preserved_patterns['anonymized_examples'] = anonymized_examples
        
        return privacy_preserved_patterns
    
    async def secure_pattern_aggregation(self, participant_contributions, learning_config):
        """
        Securely aggregate patterns from all participants
        """
        aggregation_results = {
            'global_patterns': {},
            'consensus_patterns': {},
            'divergent_patterns': {},
            'confidence_scores': {}
        }
        
        # Decrypt contributions
        decrypted_contributions = []
        for contribution in participant_contributions:
            decrypted = await self.decrypt_contribution(contribution)
            decrypted_contributions.append(decrypted)
        
        # Aggregate patterns using secure multi-party computation
        if learning_config.get('use_secure_aggregation', True):
            global_patterns = await self.secure_multiparty_aggregation(
                decrypted_contributions
            )
        else:
            global_patterns = await self.simple_aggregation(
                decrypted_contributions
            )
        
        aggregation_results['global_patterns'] = global_patterns
        
        # Identify consensus patterns (patterns agreed upon by majority)
        consensus_patterns = await self.identify_consensus_patterns(
            decrypted_contributions,
            consensus_threshold=learning_config.get('consensus_threshold', 0.7)
        )
        aggregation_results['consensus_patterns'] = consensus_patterns
        
        # Identify divergent patterns (patterns that vary significantly)
        divergent_patterns = await self.identify_divergent_patterns(
            decrypted_contributions,
            divergence_threshold=learning_config.get('divergence_threshold', 0.5)
        )
        aggregation_results['divergent_patterns'] = divergent_patterns
        
        # Calculate confidence scores for aggregated patterns
        confidence_scores = await self.calculate_pattern_confidence_scores(
            global_patterns,
            decrypted_contributions
        )
        aggregation_results['confidence_scores'] = confidence_scores
        
        return aggregation_results
    
    async def apply_differential_privacy(self, patterns, privacy_requirements):
        """
        Apply differential privacy to pattern data
        """
        epsilon = privacy_requirements.get('epsilon', self.privacy_config['epsilon'])
        sensitivity = privacy_requirements.get('sensitivity', 1.0)
        
        dp_patterns = {}
        
        for pattern_type, pattern_data in patterns.items():
            if isinstance(pattern_data, dict):
                # Handle frequency counts
                if 'counts' in pattern_data:
                    noisy_counts = {}
                    for key, count in pattern_data['counts'].items():
                        noise = self.dp_mechanism.add_noise(count, sensitivity)
                        noisy_counts[key] = max(0, count + noise)  # Ensure non-negative
                    dp_patterns[pattern_type] = {
                        **pattern_data,
                        'counts': noisy_counts
                    }
                # Handle continuous values
                elif 'values' in pattern_data:
                    noisy_values = []
                    for value in pattern_data['values']:
                        noise = self.dp_mechanism.add_noise(value, sensitivity)
                        noisy_values.append(value + noise)
                    dp_patterns[pattern_type] = {
                        **pattern_data,
                        'values': noisy_values
                    }
                else:
                    # For other types, apply noise to numerical fields
                    dp_pattern_data = {}
                    for key, value in pattern_data.items():
                        if isinstance(value, (int, float)):
                            noise = self.dp_mechanism.add_noise(value, sensitivity)
                            dp_pattern_data[key] = value + noise
                        else:
                            dp_pattern_data[key] = value
                    dp_patterns[pattern_type] = dp_pattern_data
            else:
                # Handle simple numerical values
                if isinstance(pattern_data, (int, float)):
                    noise = self.dp_mechanism.add_noise(pattern_data, sensitivity)
                    dp_patterns[pattern_type] = pattern_data + noise
                else:
                    dp_patterns[pattern_type] = pattern_data
        
        return dp_patterns

class PatternAggregator:
    """
    Aggregates patterns across multiple participants while preserving privacy
    """
    
    def __init__(self):
        self.aggregation_strategies = {
            'frequency_aggregation': FrequencyAggregationStrategy(),
            'weighted_aggregation': WeightedAggregationStrategy(),
            'consensus_aggregation': ConsensusAggregationStrategy(),
            'hierarchical_aggregation': HierarchicalAggregationStrategy()
        }
    
    async def aggregate_success_patterns(self, participant_patterns, aggregation_config):
        """
        Aggregate success patterns across participants
        """
        aggregated_success_patterns = {
            'pattern_categories': {},
            'success_factors': {},
            'correlation_patterns': {},
            'predictive_patterns': {}
        }
        
        # Aggregate by pattern categories
        for participant_pattern in participant_patterns:
            for category, patterns in participant_pattern.get('pattern_categories', {}).items():
                if category not in aggregated_success_patterns['pattern_categories']:
                    aggregated_success_patterns['pattern_categories'][category] = []
                
                aggregated_success_patterns['pattern_categories'][category].extend(patterns)
        
        # Identify common success factors
        success_factors = await self.identify_common_success_factors(participant_patterns)
        aggregated_success_patterns['success_factors'] = success_factors
        
        # Analyze correlation patterns
        correlation_patterns = await self.analyze_cross_participant_correlations(
            participant_patterns
        )
        aggregated_success_patterns['correlation_patterns'] = correlation_patterns
        
        # Generate predictive patterns
        predictive_patterns = await self.generate_predictive_success_patterns(
            aggregated_success_patterns,
            participant_patterns
        )
        aggregated_success_patterns['predictive_patterns'] = predictive_patterns
        
        return aggregated_success_patterns
    
    async def identify_common_success_factors(self, participant_patterns):
        """
        Identify success factors that appear across multiple participants
        """
        success_factor_counts = {}
        total_participants = len(participant_patterns)
        
        # Count occurrences of success factors
        for participant_pattern in participant_patterns:
            success_factors = participant_pattern.get('success_factors', {})
            for factor, importance in success_factors.items():
                if factor not in success_factor_counts:
                    success_factor_counts[factor] = {
                        'count': 0,
                        'total_importance': 0,
                        'participants': []
                    }
                
                success_factor_counts[factor]['count'] += 1
                success_factor_counts[factor]['total_importance'] += importance
                success_factor_counts[factor]['participants'].append(
                    participant_pattern.get('participant_id')
                )
        
        # Calculate consensus and importance scores
        common_success_factors = {}
        for factor, data in success_factor_counts.items():
            consensus_score = data['count'] / total_participants
            average_importance = data['total_importance'] / data['count']
            
            # Only include factors with significant consensus
            if consensus_score >= 0.3:  # At least 30% of participants
                common_success_factors[factor] = {
                    'consensus_score': consensus_score,
                    'average_importance': average_importance,
                    'participant_count': data['count'],
                    'total_participants': total_participants
                }
        
        return common_success_factors

class PrivacyBudgetTracker:
    """
    Track and manage differential privacy budget across learning operations
    """
    
    def __init__(self, total_epsilon, total_delta):
        self.total_epsilon = total_epsilon
        self.total_delta = total_delta
        self.used_epsilon = 0.0
        self.used_delta = 0.0
        self.budget_allocations = {}
        self.operation_history = []
    
    async def allocate_budget(self, operation_id, requested_epsilon, requested_delta):
        """
        Allocate privacy budget for a specific operation
        """
        remaining_epsilon = self.total_epsilon - self.used_epsilon
        remaining_delta = self.total_delta - self.used_delta
        
        if requested_epsilon > remaining_epsilon or requested_delta > remaining_delta:
            return {
                'allocation_successful': False,
                'reason': 'insufficient_budget',
                'remaining_epsilon': remaining_epsilon,
                'remaining_delta': remaining_delta,
                'requested_epsilon': requested_epsilon,
                'requested_delta': requested_delta
            }
        
        # Allocate budget
        self.budget_allocations[operation_id] = {
            'epsilon': requested_epsilon,
            'delta': requested_delta,
            'timestamp': datetime.utcnow(),
            'status': 'allocated'
        }
        
        return {
            'allocation_successful': True,
            'operation_id': operation_id,
            'allocated_epsilon': requested_epsilon,
            'allocated_delta': requested_delta,
            'remaining_epsilon': remaining_epsilon - requested_epsilon,
            'remaining_delta': remaining_delta - requested_delta
        }
    
    async def consume_budget(self, operation_id, actual_epsilon, actual_delta):
        """
        Consume allocated privacy budget after operation completion
        """
        if operation_id not in self.budget_allocations:
            raise ValueError(f"No budget allocation found for operation {operation_id}")
        
        allocation = self.budget_allocations[operation_id]
        
        if actual_epsilon > allocation['epsilon'] or actual_delta > allocation['delta']:
            raise ValueError("Actual consumption exceeds allocated budget")
        
        # Update used budget
        self.used_epsilon += actual_epsilon
        self.used_delta += actual_delta
        
        # Record operation
        self.operation_history.append({
            'operation_id': operation_id,
            'epsilon_consumed': actual_epsilon,
            'delta_consumed': actual_delta,
            'timestamp': datetime.utcnow()
        })
        
        # Update allocation status
        allocation['status'] = 'consumed'
        allocation['actual_epsilon'] = actual_epsilon
        allocation['actual_delta'] = actual_delta
        
        return {
            'consumption_successful': True,
            'remaining_epsilon': self.total_epsilon - self.used_epsilon,
            'remaining_delta': self.total_delta - self.used_delta
        }

Cross-Organization Learning Network

class CrossOrganizationLearningNetwork:
    """
    Facilitate learning across organizational boundaries with trust and privacy controls
    """
    
    def __init__(self):
        self.trust_network = TrustNetwork()
        self.reputation_system = ReputationSystem()
        self.governance_framework = GovernanceFramework()
        self.incentive_mechanism = IncentiveMechanism()
    
    async def establish_learning_consortium(self, organizations, consortium_config):
        """
        Establish a learning consortium across organizations
        """
        consortium = {
            'consortium_id': generate_uuid(),
            'organizations': {},
            'governance_rules': {},
            'learning_agreements': {},
            'trust_relationships': {},
            'incentive_structure': {}
        }
        
        # Validate and register organizations
        for org_id, org_config in organizations.items():
            org_validation = await self.validate_organization(org_id, org_config)
            if org_validation['is_valid']:
                consortium['organizations'][org_id] = org_validation
        
        # Establish governance rules
        governance_rules = await self.establish_governance_rules(
            consortium['organizations'],
            consortium_config
        )
        consortium['governance_rules'] = governance_rules
        
        # Create learning agreements
        learning_agreements = await self.create_learning_agreements(
            consortium['organizations'],
            consortium_config
        )
        consortium['learning_agreements'] = learning_agreements
        
        # Build trust relationships
        trust_relationships = await self.build_trust_relationships(
            consortium['organizations']
        )
        consortium['trust_relationships'] = trust_relationships
        
        # Design incentive structure
        incentive_structure = await self.design_incentive_structure(
            consortium['organizations'],
            consortium_config
        )
        consortium['incentive_structure'] = incentive_structure
        
        return consortium
    
    async def execute_consortium_learning(self, consortium, learning_objectives):
        """
        Execute federated learning across consortium organizations
        """
        learning_session = {
            'session_id': generate_uuid(),
            'consortium_id': consortium['consortium_id'],
            'objectives': learning_objectives,
            'participants': {},
            'learning_outcomes': {},
            'trust_metrics': {},
            'incentive_distributions': {}
        }
        
        # Prepare participants for learning
        for org_id in consortium['organizations']:
            participant_prep = await self.prepare_organization_for_learning(
                org_id,
                learning_objectives,
                consortium['governance_rules']
            )
            learning_session['participants'][org_id] = participant_prep
        
        # Execute federated learning with privacy preservation
        learning_engine = FederatedLearningEngine(
            privacy_config=consortium['governance_rules']['privacy_config']
        )
        
        learning_results = await learning_engine.federated_pattern_learning({
            'learning_type': learning_objectives['type'],
            'privacy_requirements': consortium['governance_rules']['privacy_requirements'],
            'consensus_threshold': consortium['governance_rules']['consensus_threshold'],
            'participants': learning_session['participants']
        })
        
        learning_session['learning_outcomes'] = learning_results
        
        # Update trust metrics
        trust_metrics = await self.update_trust_metrics(
            consortium,
            learning_results
        )
        learning_session['trust_metrics'] = trust_metrics
        
        # Distribute incentives
        incentive_distributions = await self.distribute_incentives(
            consortium,
            learning_results,
            learning_session['participants']
        )
        learning_session['incentive_distributions'] = incentive_distributions
        
        return learning_session

Cross-Project Learning Commands

# Federation setup and management
bmad federation create --participants "org1,org2,org3" --privacy-level "high"
bmad federation join --consortium-id "uuid" --organization "my-org"
bmad federation status --show-participants --trust-levels

# Privacy-preserving learning
bmad learn patterns --cross-project --privacy-budget "epsilon=1.0,delta=1e-5"
bmad learn success-factors --anonymous --min-participants 5
bmad learn anti-patterns --federated --consensus-threshold 0.7

# Trust and reputation management
bmad trust analyze --organization "org-id" --reputation-metrics
bmad reputation update --participant "org-id" --contribution-quality 0.9
bmad governance review --consortium-rules --compliance-check

# Learning outcomes and insights
bmad insights patterns --global --confidence-threshold 0.8
bmad insights trends --technology-adoption --time-window "1-year"
bmad insights export --learning-outcomes --privacy-preserved

This Federated Learning Engine enables secure, privacy-preserving learning across projects and organizations while extracting valuable insights that benefit the entire development community. The system maintains strong privacy guarantees while enabling collaborative learning at scale.