18 KiB
18 KiB
Collaboration Orchestrator
Multi-Agent Task Coordination for Claude Code
The Collaboration Orchestrator enables sophisticated multi-persona workflows within Claude Code, allowing AI experts to work together seamlessly on complex development tasks.
Collaboration Patterns for Claude Code
1. Sequential Collaboration Pattern
sequential_pattern:
description: "Personas work in sequence, each building on previous work"
use_cases:
- feature_development: "Analyst → PM → Architect → Developer → QA"
- security_review: "Security → Architect → Developer → QA"
- performance_optimization: "Architect → Developer → QA → Platform Engineer"
coordination_mechanism:
handoff_protocol:
- complete_current_work: "Finish assigned tasks"
- document_deliverables: "Create handoff documentation"
- notify_next_persona: "Send structured handoff message"
- validate_prerequisites: "Ensure next persona has what they need"
quality_gates:
- completion_criteria: "Clear definition of 'done'"
- validation_checks: "Automated and manual validations"
- approval_requirements: "Who needs to approve handoff"
- rollback_procedures: "What to do if issues found"
# Example: Sequential API Development
sequential_api_development:
phase_1_analysis:
persona: "analyst"
deliverables: ["requirements-analysis.md", "user-stories.md"]
claude_tools: ["WebSearch", "Read", "Write"]
completion_criteria:
- all_requirements_documented: true
- stakeholder_interviews_complete: true
- acceptance_criteria_defined: true
phase_2_design:
persona: "architect"
inputs: ["requirements-analysis.md", "user-stories.md"]
deliverables: ["api-design.md", "data-model.md", "integration-patterns.md"]
claude_tools: ["Read", "Write", "Edit", "MultiEdit"]
completion_criteria:
- api_endpoints_defined: true
- data_models_specified: true
- security_considerations_documented: true
phase_3_security_review:
persona: "security"
inputs: ["api-design.md", "data-model.md"]
deliverables: ["security-assessment.md", "threat-model.md"]
claude_tools: ["Read", "Grep", "WebFetch", "Write"]
completion_criteria:
- threat_model_complete: true
- security_controls_specified: true
- compliance_requirements_met: true
2. Parallel Collaboration Pattern
async def parallel_collaboration_pattern(task_definition):
"""
Coordinate multiple personas working simultaneously on related tasks
"""
# Define parallel work streams
work_streams = {
'frontend_development': {
'persona': 'frontend-dev',
'tasks': ['component-implementation', 'state-management', 'api-integration'],
'dependencies': ['api-spec', 'design-mockups'],
'deliverables': ['ui-components', 'integration-layer']
},
'backend_development': {
'persona': 'backend-dev',
'tasks': ['api-implementation', 'database-design', 'business-logic'],
'dependencies': ['api-spec', 'data-requirements'],
'deliverables': ['api-endpoints', 'data-access-layer']
},
'qa_preparation': {
'persona': 'qa',
'tasks': ['test-strategy', 'test-data-preparation', 'automation-setup'],
'dependencies': ['requirements', 'api-spec'],
'deliverables': ['test-plans', 'automated-tests']
},
'devops_setup': {
'persona': 'platform-engineer',
'tasks': ['ci-cd-pipeline', 'infrastructure-setup', 'monitoring'],
'dependencies': ['deployment-requirements'],
'deliverables': ['deployment-pipeline', 'infrastructure-code']
}
}
# Create shared workspace for coordination
shared_workspace = await create_shared_workspace(task_definition.project_id)
# Initialize parallel execution
parallel_tasks = []
for stream_id, stream_config in work_streams.items():
task = execute_work_stream(
stream_id,
stream_config,
shared_workspace,
task_definition.global_context
)
parallel_tasks.append(task)
# Monitor parallel execution with coordination
coordination_result = await coordinate_parallel_execution(
parallel_tasks,
shared_workspace
)
return coordination_result
async def coordinate_parallel_execution(parallel_tasks, shared_workspace):
"""
Coordinate parallel work streams with conflict resolution and synchronization
"""
coordination_state = {
'active_tasks': parallel_tasks,
'completed_tasks': [],
'blocked_tasks': [],
'conflicts': [],
'shared_resources': shared_workspace.resources
}
while coordination_state['active_tasks']:
# Check for task completions
completed = await check_task_completions(coordination_state['active_tasks'])
coordination_state['completed_tasks'].extend(completed)
coordination_state['active_tasks'] = [
task for task in coordination_state['active_tasks']
if task not in completed
]
# Detect and resolve conflicts
conflicts = await detect_resource_conflicts(coordination_state)
if conflicts:
resolution_results = await resolve_conflicts(conflicts, shared_workspace)
coordination_state['conflicts'].extend(resolution_results)
# Handle blocked tasks
blocked_tasks = await identify_blocked_tasks(coordination_state['active_tasks'])
if blocked_tasks:
unblock_results = await attempt_to_unblock_tasks(
blocked_tasks,
coordination_state
)
coordination_state['blocked_tasks'].extend(unblock_results)
# Synchronize shared state
await synchronize_shared_workspace(shared_workspace, coordination_state)
# Brief pause before next coordination cycle
await asyncio.sleep(1)
# Final integration of parallel work
integration_result = await integrate_parallel_outputs(
coordination_state['completed_tasks'],
shared_workspace
)
return {
'coordination_summary': coordination_state,
'integration_result': integration_result,
'final_deliverables': integration_result.consolidated_outputs
}
3. Consultative Collaboration Pattern
async def consultative_collaboration(primary_persona, consultation_needs):
"""
Enable primary persona to consult with experts as needed
"""
consultation_session = {
'session_id': generate_uuid(),
'primary_persona': primary_persona,
'consultation_requests': [],
'expert_responses': [],
'decisions_made': []
}
for consultation in consultation_needs:
# Prepare consultation request
consultation_request = {
'id': generate_uuid(),
'expert_needed': consultation['expert_domain'],
'question': consultation['question'],
'context': consultation['context'],
'urgency': consultation.get('urgency', 'normal'),
'claude_tools_available': consultation.get('tools', ['Read', 'Write', 'WebFetch'])
}
# Route to appropriate expert
expert_persona = select_expert_for_domain(consultation['expert_domain'])
# Execute consultation using Claude Code tools
expert_response = await execute_expert_consultation(
expert_persona,
consultation_request,
consultation_session
)
consultation_session['expert_responses'].append(expert_response)
# Apply expert recommendations
if expert_response.requires_action:
action_result = await apply_expert_recommendations(
expert_response,
primary_persona,
consultation_session
)
consultation_session['decisions_made'].append(action_result)
return consultation_session
async def execute_expert_consultation(expert_persona, consultation_request, session):
"""
Execute a single expert consultation using Claude Code capabilities
"""
# Prepare expert context
expert_context = await prepare_expert_context(
expert_persona,
consultation_request,
session['primary_persona']
)
# Execute consultation based on domain
if expert_persona == 'security':
consultation_result = await security_consultation(
consultation_request,
expert_context
)
elif expert_persona == 'architect':
consultation_result = await architecture_consultation(
consultation_request,
expert_context
)
elif expert_persona == 'qa':
consultation_result = await quality_consultation(
consultation_request,
expert_context
)
elif expert_persona == 'platform-engineer':
consultation_result = await infrastructure_consultation(
consultation_request,
expert_context
)
# Document consultation for future reference
await document_consultation(
consultation_request,
consultation_result,
session
)
return consultation_result
# Example: Security Consultation Implementation
async def security_consultation(consultation_request, expert_context):
"""
Security expert consultation using Claude Code tools
"""
# Analyze security implications using Grep and Read
if 'code_review' in consultation_request['context']:
code_files = consultation_request['context']['files']
# Use Grep to find security-relevant patterns
security_patterns = await grep_security_patterns(code_files)
# Use Read to analyze specific security concerns
detailed_analysis = await analyze_security_details(
code_files,
security_patterns
)
# Use WebFetch to check latest security advisories
latest_threats = await fetch_latest_security_advisories(
expert_context['technology_stack']
)
# Generate security recommendations
recommendations = generate_security_recommendations(
detailed_analysis,
latest_threats,
expert_context
)
# Create implementation guidance using Write tool
implementation_guide = await create_security_implementation_guide(
recommendations,
consultation_request['context']
)
return {
'expert': 'security',
'analysis': detailed_analysis,
'recommendations': recommendations,
'implementation_guide': implementation_guide,
'risk_assessment': assess_security_risks(detailed_analysis),
'requires_action': len(recommendations) > 0
}
Collaboration Workspace Management
Shared Workspace for Claude Code
shared_workspace:
workspace_structure:
shared_files:
- collaboration_notes.md: "Real-time collaboration notes"
- decision_log.md: "Decisions made during collaboration"
- artifact_registry.md: "Registry of all created artifacts"
- conflict_resolution_log.md: "Record of resolved conflicts"
persona_workspaces:
- architect/: "Architecture-specific working files"
- security/: "Security analysis and reports"
- qa/: "Test plans and quality assessments"
- dev/: "Implementation artifacts"
integration_area:
- final_deliverables/: "Consolidated outputs"
- review_materials/: "Items pending review"
- approved_artifacts/: "Finalized deliverables"
access_control:
read_permissions:
- all_personas: ["shared_files/*", "*/README.md"]
- persona_specific: ["own_workspace/*"]
- integration_access: ["integration_area/*"]
write_permissions:
- collaborative_files: ["collaboration_notes.md", "decision_log.md"]
- persona_workspaces: ["own_workspace/*"]
- controlled_integration: ["integration_area/*"] # requires approval
synchronization_rules:
real_time_sync:
- collaboration_notes.md: "immediate_sync"
- decision_log.md: "immediate_sync"
- conflict_resolution_log.md: "immediate_sync"
batch_sync:
- persona_workspaces: "every_5_minutes"
- integration_area: "on_explicit_request"
conflict_resolution:
- concurrent_edits: "merge_with_annotations"
- contradictory_decisions: "escalate_to_orchestrator"
- resource_conflicts: "priority_based_resolution"
Conflict Detection and Resolution
Intelligent Conflict Management
async def detect_and_resolve_collaboration_conflicts():
"""
Continuously monitor for collaboration conflicts and resolve them intelligently
"""
conflict_monitor = {
'file_conflicts': await monitor_concurrent_file_edits(),
'decision_conflicts': await monitor_contradictory_decisions(),
'resource_conflicts': await monitor_resource_contention(),
'timeline_conflicts': await monitor_schedule_conflicts()
}
detected_conflicts = []
# Check each conflict type
for conflict_type, monitor in conflict_monitor.items():
conflicts = await monitor.check_for_conflicts()
if conflicts:
detected_conflicts.extend([
{'type': conflict_type, 'details': conflict}
for conflict in conflicts
])
# Resolve conflicts using appropriate strategies
resolution_results = []
for conflict in detected_conflicts:
resolution_strategy = select_resolution_strategy(conflict)
resolution_result = await execute_resolution_strategy(
conflict,
resolution_strategy
)
resolution_results.append(resolution_result)
return {
'conflicts_detected': len(detected_conflicts),
'conflicts_resolved': len([r for r in resolution_results if r.success]),
'pending_conflicts': [r for r in resolution_results if not r.success],
'resolution_summary': resolution_results
}
async def execute_resolution_strategy(conflict, strategy):
"""
Execute specific conflict resolution strategy
"""
if strategy.type == 'expertise_hierarchy':
# Defer to domain expert
expert_decision = await consult_domain_expert(conflict, strategy.expert)
resolution = await apply_expert_decision(expert_decision, conflict)
elif strategy.type == 'collaborative_merge':
# Merge conflicting work collaboratively
merge_session = await initiate_collaborative_merge(conflict)
resolution = await execute_collaborative_merge(merge_session)
elif strategy.type == 'sequential_ordering':
# Order conflicting operations sequentially
operation_order = await determine_optimal_sequence(conflict)
resolution = await execute_sequential_operations(operation_order)
elif strategy.type == 'resource_sharing':
# Share contested resources
sharing_plan = await create_resource_sharing_plan(conflict)
resolution = await implement_resource_sharing(sharing_plan)
# Document resolution for learning
await document_conflict_resolution(conflict, strategy, resolution)
return resolution
Performance Optimization for Collaboration
Efficient Multi-Persona Coordination
performance_optimization:
parallel_processing:
independent_tasks:
- identify_dependencies: "Map task interdependencies"
- create_execution_graph: "Optimize execution order"
- maximize_parallelism: "Run independent tasks simultaneously"
resource_pooling:
- shared_tool_access: "Coordinate Claude Code tool usage"
- memory_sharing: "Share computed results between personas"
- cache_coordination: "Avoid duplicate computations"
communication_efficiency:
message_batching:
- group_related_messages: "Bundle related communications"
- compress_large_contexts: "Reduce context transfer overhead"
- prioritize_urgent_communications: "Fast-track critical messages"
smart_routing:
- direct_expertise_matching: "Route directly to best expert"
- avoid_unnecessary_routing: "Skip irrelevant personas"
- predictive_pre-positioning: "Anticipate consultation needs"
context_optimization:
incremental_updates:
- delta_synchronization: "Only sync changes, not full context"
- selective_distribution: "Send relevant context only"
- lazy_loading: "Load context on demand"
intelligent_caching:
- context_snapshots: "Cache frequently accessed contexts"
- prediction_caching: "Pre-cache likely needed contexts"
- adaptive_expiration: "Intelligent cache invalidation"
Claude Code Integration Commands
# Collaboration initiation
bmad collaborate start --pattern "sequential" --participants "analyst,architect,dev"
bmad collaborate start --pattern "parallel" --workstreams "frontend,backend,qa"
bmad collaborate start --pattern "consultative" --primary "architect" --experts "security,qa"
# Workspace management
bmad workspace create --shared --participants "architect,security,qa"
bmad workspace sync --resolve-conflicts
bmad workspace status --show-conflicts
# Collaboration monitoring
bmad collaborate status --active-sessions
bmad collaborate conflicts --list --resolve
bmad collaborate handoff --from "architect" --to "dev" --validate
# Performance and optimization
bmad collaborate optimize --parallel-efficiency
bmad collaborate analyze --bottlenecks
bmad collaborate report --session "uuid" --detailed
This Collaboration Orchestrator transforms Claude Code into a sophisticated multi-agent workspace where AI personas can work together efficiently, handling complex development tasks that require multiple areas of expertise while maintaining coordination and resolving conflicts intelligently.