BMAD-METHOD/bmad-system/INTEGRATION_GUIDE.md

21 KiB

Enhanced BMAD System Integration Guide

🔗 Complete Integration Reference

This guide provides comprehensive instructions for integrating the Enhanced BMAD System with various development environments, tools, and workflows.

1. 🎯 Claude Code Integration

Basic Integration

// Initialize BMAD in Claude Code session
const bmadSystem = {
    mode: "enhanced",
    autonomy_level: "collaborative",
    learning_enabled: true,
    optimization_targets: ["quality", "speed", "maintainability"]
};

// Start BMAD-powered development session
function initializeBMAD() {
    return `
    Enhanced BMAD System initialized for Claude Code.
    
    Configuration:
    - Autonomy Level: ${bmadSystem.autonomy_level}
    - Learning: ${bmadSystem.learning_enabled ? 'Enabled' : 'Disabled'}
    - Optimization: ${bmadSystem.optimization_targets.join(', ')}
    
    Ready for intelligent development assistance.
    `;
}

Advanced Claude Code Integration

# Python interface for BMAD-Claude Code integration
class BMADClaudeCodeInterface:
    def __init__(self, config=None):
        self.config = config or {
            "autonomy_level": "collaborative",
            "learning_rate": "adaptive",
            "quality_gates": True,
            "safety_checks": True,
            "multi_llm_enabled": False
        }
        
    async def process_request(self, user_request, context=None):
        """Process user request with BMAD intelligence"""
        # Analyze request complexity and requirements
        analysis = await self.analyze_request(user_request, context)
        
        # Route to appropriate BMAD module
        if analysis["type"] == "code_development":
            return await self.autonomous_development_engine.process(
                user_request, analysis
            )
        elif analysis["type"] == "architecture_design":
            return await self.enterprise_architecture_platform.design(
                user_request, analysis
            )
        elif analysis["type"] == "optimization_request":
            return await self.self_optimization_engine.optimize(
                user_request, analysis
            )
        
        # Default to intelligent assistance
        return await self.provide_intelligent_assistance(user_request, analysis)

Session Configuration Examples

For Individual Developers

Configure BMAD for personal development:
- Autonomy: Collaborative (you and AI work together)
- Learning: Enabled (adapts to your coding style)
- Safety: High (prevents dangerous operations)
- Optimization: Focus on code quality and learning

Please help me with [your development task]

For Teams

Configure BMAD for team development:
- Autonomy: Supervised (AI works, team reviews)
- Standards: Enforce team coding standards
- Integration: Connect with team's CI/CD pipeline
- Collaboration: Enable shared learning across team

Team project: [project description]

For Enterprise

Configure BMAD for enterprise development:
- Autonomy: Guided/Collaborative (enterprise constraints)
- Compliance: Enable all regulatory frameworks
- Security: Zero-trust architecture
- Governance: Full enterprise governance
- Monitoring: Complete analytics and reporting

Enterprise requirements: [requirements document]

2. 🤖 Multi-LLM Integration

LLM Orchestration Configuration

class MultiLLMOrchestrator:
    def __init__(self):
        self.llm_capabilities = {
            "claude": {
                "strengths": ["reasoning", "analysis", "architecture"],
                "best_for": ["complex_logic", "system_design", "documentation"],
                "cost_tier": "premium"
            },
            "gpt4": {
                "strengths": ["code_generation", "completion", "translation"],
                "best_for": ["rapid_prototyping", "code_completion", "refactoring"],
                "cost_tier": "high"
            },
            "gemini": {
                "strengths": ["multimodal", "search", "data_analysis"],
                "best_for": ["image_processing", "data_science", "research"],
                "cost_tier": "medium"
            },
            "deepseek": {
                "strengths": ["code_understanding", "optimization"],
                "best_for": ["code_review", "performance_optimization"],
                "cost_tier": "low"
            }
        }
        
    async def route_request(self, request, context):
        """Intelligently route request to best LLM"""
        request_analysis = await self.analyze_request_type(request)
        
        # Select optimal LLM based on task type and constraints
        selected_llm = await self.select_optimal_llm(
            request_analysis,
            cost_constraint=context.get("budget"),
            quality_requirement=context.get("quality_level"),
            speed_requirement=context.get("urgency")
        )
        
        return await self.execute_with_llm(selected_llm, request, context)

Configuration Examples

Cost-Optimized Strategy

bmad_multi_llm_config:
  strategy: "cost_optimized"
  primary_llm: "deepseek"  # Low cost for routine tasks
  fallback_llm: "claude"   # High quality for complex tasks
  routing_rules:
    - if: "simple_code_generation"
      use: "deepseek"
    - if: "complex_reasoning"
      use: "claude"
    - if: "data_analysis"
      use: "gemini"

Quality-First Strategy

bmad_multi_llm_config:
  strategy: "quality_first"
  primary_llm: "claude"     # Highest quality reasoning
  secondary_llm: "gpt4"     # Fast code generation
  validation_llm: "gemini"  # Cross-validation
  routing_rules:
    - if: "architecture_design"
      use: "claude"
    - if: "rapid_prototyping"
      use: "gpt4"
    - if: "validation_required"
      use: ["claude", "gemini"]  # Consensus approach

Balanced Strategy

bmad_multi_llm_config:
  strategy: "balanced"
  models:
    - name: "claude"
      weight: 0.4
      specializations: ["reasoning", "architecture"]
    - name: "gpt4"
      weight: 0.3
      specializations: ["code_generation", "completion"]
    - name: "gemini"
      weight: 0.2
      specializations: ["data_analysis", "research"]
    - name: "deepseek"
      weight: 0.1
      specializations: ["optimization", "review"]

3. 🛠️ Development Tool Integration

IDE Integration

VS Code Extension

// VS Code extension for BMAD integration
class BMADVSCodeExtension {
    constructor() {
        this.bmadInterface = new BMADInterface();
    }
    
    async activate(context) {
        // Register BMAD commands
        const commands = [
            'bmad.analyzeCode',
            'bmad.generateTests',
            'bmad.optimizePerformance',
            'bmad.refactorCode',
            'bmad.generateDocumentation'
        ];
        
        commands.forEach(command => {
            const disposable = vscode.commands.registerCommand(
                command,
                this.handleBMADCommand.bind(this)
            );
            context.subscriptions.push(disposable);
        });
        
        // Setup real-time code assistance
        this.setupRealTimeAssistance();
    }
    
    async handleBMADCommand(command, ...args) {
        const activeEditor = vscode.window.activeTextEditor;
        if (!activeEditor) return;
        
        const document = activeEditor.document;
        const selectedText = document.getText(activeEditor.selection);
        
        const result = await this.bmadInterface.processCommand({
            command: command,
            code: selectedText,
            context: await this.getContextInfo(document)
        });
        
        await this.applyResult(result, activeEditor);
    }
}

JetBrains Plugin

// JetBrains IDEA plugin for BMAD
class BMADPlugin : ApplicationComponent {
    private val bmadService = BMADService()
    
    override fun initComponent() {
        // Register BMAD actions
        val actionManager = ActionManager.getInstance()
        
        actionManager.registerAction(
            "BMAD.AnalyzeCode",
            BMADAnalyzeAction(bmadService)
        )
        
        actionManager.registerAction(
            "BMAD.OptimizeCode",
            BMADOptimizeAction(bmadService)
        )
        
        // Setup background analysis
        setupBackgroundAnalysis()
    }
    
    private fun setupBackgroundAnalysis() {
        EditorFactory.getInstance().addEditorFactoryListener(
            object : EditorFactoryListener {
                override fun editorCreated(event: EditorFactoryEvent) {
                    val editor = event.editor
                    setupBMADAssistance(editor)
                }
            }
        )
    }
}

Git Integration

class BMADGitIntegration:
    """Integrate BMAD with Git workflows"""
    
    def __init__(self, repo_path):
        self.repo = git.Repo(repo_path)
        self.bmad = BMADSystem()
        
    async def analyze_commit(self, commit_hash):
        """Analyze commit with BMAD intelligence"""
        commit = self.repo.commit(commit_hash)
        
        analysis = await self.bmad.analyze_code_changes(
            changed_files=commit.stats.files,
            diff=commit.diff(),
            commit_message=commit.message
        )
        
        return {
            "quality_score": analysis.quality_score,
            "potential_issues": analysis.issues,
            "suggestions": analysis.suggestions,
            "test_coverage_impact": analysis.test_impact
        }
    
    async def generate_commit_message(self, staged_changes):
        """Generate intelligent commit message"""
        return await self.bmad.generate_commit_message(
            changes=staged_changes,
            style="conventional_commits",
            include_breaking_changes=True
        )
    
    async def review_pull_request(self, pr_number):
        """Automated PR review with BMAD"""
        pr_data = await self.get_pr_data(pr_number)
        
        review = await self.bmad.review_pull_request(
            pr_data=pr_data,
            check_standards=True,
            security_scan=True,
            performance_analysis=True
        )
        
        return review

CI/CD Integration

GitHub Actions

# .github/workflows/bmad-analysis.yml
name: BMAD Code Analysis

on:
  pull_request:
    branches: [ main, develop ]
  push:
    branches: [ main ]

jobs:
  bmad-analysis:
    runs-on: ubuntu-latest
    
    steps:
    - uses: actions/checkout@v3
    
    - name: Setup BMAD Environment
      uses: bmad-system/setup-action@v1
      with:
        bmad-version: 'latest'
        llm-provider: 'claude'
        autonomy-level: 'supervised'
    
    - name: Run BMAD Code Analysis
      run: |
        bmad analyze --comprehensive \
          --output-format json \
          --quality-gates \
          --security-scan \
          --performance-check        
    
    - name: BMAD Optimization Recommendations
      run: |
        bmad optimize --analyze-only \
          --recommendations-file optimization-report.md        
    
    - name: Comment PR with BMAD Results
      if: github.event_name == 'pull_request'
      uses: bmad-system/comment-action@v1
      with:
        analysis-file: 'bmad-analysis.json'
        optimization-file: 'optimization-report.md'

Jenkins Pipeline

// Jenkinsfile with BMAD integration
pipeline {
    agent any
    
    stages {
        stage('BMAD Analysis') {
            steps {
                script {
                    // Initialize BMAD
                    sh '''
                        bmad init --pipeline-mode
                        bmad configure --llm claude --autonomy supervised
                    '''
                    
                    // Run comprehensive analysis
                    def analysis = sh(
                        script: 'bmad analyze --comprehensive --json',
                        returnStdout: true
                    ).trim()
                    
                    // Parse results
                    def results = readJSON text: analysis
                    
                    // Set build status based on quality gates
                    if (results.quality_score < 0.8) {
                        currentBuild.result = 'UNSTABLE'
                        error("BMAD quality gates failed: ${results.quality_score}")
                    }
                }
            }
        }
        
        stage('BMAD Optimization') {
            when {
                branch 'main'
            }
            steps {
                sh '''
                    bmad optimize --execute \
                        --approve-safe-changes \
                        --create-optimization-pr
                '''
            }
        }
    }
    
    post {
        always {
            // Archive BMAD reports
            archiveArtifacts artifacts: 'bmad-reports/**'
            
            // Publish quality metrics
            publishHTML([
                allowMissing: false,
                alwaysLinkToLastBuild: true,
                keepAll: true,
                reportDir: 'bmad-reports',
                reportFiles: 'quality-report.html',
                reportName: 'BMAD Quality Report'
            ])
        }
    }
}

4. 🏢 Enterprise Integration

Enterprise Architecture Integration

class EnterpriseIntegration:
    """Enterprise-level BMAD integration"""
    
    def __init__(self, enterprise_config):
        self.config = enterprise_config
        self.bmad = BMADEnterpriseSystem(self.config)
        
    async def setup_enterprise_governance(self):
        """Setup enterprise governance framework"""
        governance_config = {
            "compliance_frameworks": ["SOX", "GDPR", "ISO27001"],
            "approval_workflows": self.config.approval_workflows,
            "security_policies": self.config.security_policies,
            "audit_requirements": self.config.audit_requirements
        }
        
        await self.bmad.governance.configure(governance_config)
        
    async def integrate_with_enterprise_systems(self):
        """Integrate with existing enterprise systems"""
        integrations = [
            self.integrate_with_ldap(),
            self.integrate_with_erp(),
            self.integrate_with_monitoring(),
            self.integrate_with_security_tools()
        ]
        
        await asyncio.gather(*integrations)
        
    async def setup_multi_tenant_architecture(self):
        """Setup multi-tenant BMAD deployment"""
        tenant_config = {
            "isolation_level": "strict",
            "data_residency": self.config.data_residency_requirements,
            "customization_level": "high",
            "scaling_strategy": "auto"
        }
        
        await self.bmad.multi_tenant.configure(tenant_config)

SSO Integration

class BMADSSOIntegration:
    """Single Sign-On integration for BMAD"""
    
    def __init__(self, sso_provider):
        self.sso_provider = sso_provider
        
    async def configure_saml_integration(self, saml_config):
        """Configure SAML-based SSO"""
        return {
            "identity_provider": saml_config.idp_url,
            "service_provider": "bmad-system",
            "attribute_mapping": {
                "email": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/emailaddress",
                "name": "http://schemas.xmlsoap.org/ws/2005/05/identity/claims/name",
                "roles": "http://schemas.microsoft.com/ws/2008/06/identity/claims/role"
            },
            "encryption_certificate": saml_config.encryption_cert
        }
    
    async def configure_oauth_integration(self, oauth_config):
        """Configure OAuth 2.0 / OpenID Connect"""
        return {
            "authorization_endpoint": oauth_config.auth_url,
            "token_endpoint": oauth_config.token_url,
            "userinfo_endpoint": oauth_config.userinfo_url,
            "client_id": oauth_config.client_id,
            "scopes": ["openid", "profile", "email", "bmad-access"]
        }

5. 📊 Monitoring and Analytics Integration

Observability Setup

class BMADObservability:
    """Comprehensive observability for BMAD system"""
    
    def __init__(self):
        self.metrics_collector = MetricsCollector()
        self.trace_collector = TraceCollector()
        self.log_aggregator = LogAggregator()
        
    async def setup_monitoring(self, monitoring_config):
        """Setup comprehensive monitoring"""
        # Metrics collection
        await self.setup_metrics_collection(monitoring_config.metrics)
        
        # Distributed tracing
        await self.setup_distributed_tracing(monitoring_config.tracing)
        
        # Log aggregation
        await self.setup_log_aggregation(monitoring_config.logging)
        
        # Alerting
        await self.setup_alerting(monitoring_config.alerting)
        
    async def create_dashboards(self):
        """Create monitoring dashboards"""
        dashboards = [
            await self.create_system_health_dashboard(),
            await self.create_performance_dashboard(),
            await self.create_cost_optimization_dashboard(),
            await self.create_quality_metrics_dashboard()
        ]
        
        return dashboards

Performance Metrics

# Key performance indicators for BMAD system
BMAD_METRICS = {
    "development_velocity": {
        "features_per_sprint": "gauge",
        "story_points_completed": "counter",
        "cycle_time": "histogram",
        "lead_time": "histogram"
    },
    "code_quality": {
        "bug_density": "gauge",
        "code_coverage": "gauge",
        "technical_debt_ratio": "gauge",
        "maintainability_index": "gauge"
    },
    "system_performance": {
        "response_time": "histogram",
        "throughput": "gauge",
        "error_rate": "gauge",
        "availability": "gauge"
    },
    "cost_metrics": {
        "development_cost_per_feature": "gauge",
        "infrastructure_cost": "gauge",
        "licensing_cost": "gauge",
        "total_cost_of_ownership": "gauge"
    }
}

6. 🔧 Configuration Templates

Development Environment

# bmad-dev-config.yml
bmad_config:
  environment: "development"
  autonomy_level: "collaborative"
  
  features:
    learning: true
    optimization: true
    quality_gates: true
    security_scanning: false
    
  integrations:
    ide: "vscode"
    git: true
    testing_framework: "jest"
    
  constraints:
    no_production_changes: true
    require_code_review: false
    max_file_size_changes: "1000_lines"

Production Environment

# bmad-prod-config.yml
bmad_config:
  environment: "production"
  autonomy_level: "supervised"
  
  features:
    learning: true
    optimization: true
    quality_gates: true
    security_scanning: true
    compliance_checking: true
    
  integrations:
    monitoring: "datadog"
    alerting: "pagerduty"
    security: "snyk"
    
  constraints:
    require_approval: true
    security_review_required: true
    rollback_capability: true
    audit_trail: true

Enterprise Environment

# bmad-enterprise-config.yml
bmad_config:
  environment: "enterprise"
  autonomy_level: "guided"
  
  governance:
    compliance_frameworks: ["SOX", "GDPR", "HIPAA"]
    approval_workflows: "mandatory"
    security_policies: "strict"
    
  enterprise_features:
    multi_tenancy: true
    sso_integration: true
    audit_logging: true
    cost_optimization: true
    
  integration_tier: "enterprise"
  support_tier: "premium"

🎯 Integration Best Practices

1. Start Small and Scale

  • Begin with basic Claude Code integration
  • Gradually increase autonomy levels
  • Add enterprise features as needed

2. Security First

  • Always implement proper authentication
  • Use secure communication channels
  • Regularly audit access and permissions

3. Monitor Everything

  • Track system performance metrics
  • Monitor development velocity improvements
  • Measure ROI and cost savings

4. Continuous Learning

  • Enable BMAD learning features
  • Regularly review and adjust configurations
  • Share learnings across teams

5. Compliance Awareness

  • Understand regulatory requirements
  • Configure appropriate compliance frameworks
  • Maintain audit trails

This integration guide provides the foundation for successfully implementing the Enhanced BMAD System in any environment or workflow.