929 lines
43 KiB
Markdown
929 lines
43 KiB
Markdown
# Predictive Development Intelligence
|
|
|
|
## Advanced Predictive Analytics and Intelligence for Enhanced BMAD System
|
|
|
|
The Predictive Development Intelligence module provides sophisticated predictive analytics capabilities that help teams make better decisions, plan more effectively, and achieve better outcomes through data-driven insights, trend analysis, and intelligent forecasting.
|
|
|
|
### Predictive Intelligence Architecture
|
|
|
|
#### Comprehensive Prediction Framework
|
|
```yaml
|
|
predictive_intelligence_architecture:
|
|
prediction_domains:
|
|
project_outcome_prediction:
|
|
- success_probability_prediction: "Predict likelihood of project success"
|
|
- failure_risk_assessment: "Assess risk of project failure and reasons"
|
|
- quality_outcome_prediction: "Predict final quality metrics"
|
|
- timeline_adherence_prediction: "Predict timeline compliance"
|
|
- budget_adherence_prediction: "Predict budget compliance"
|
|
|
|
timeline_effort_prediction:
|
|
- development_time_estimation: "Predict development time for features"
|
|
- task_duration_forecasting: "Forecast individual task durations"
|
|
- milestone_achievement_prediction: "Predict milestone achievement dates"
|
|
- resource_allocation_optimization: "Predict optimal resource allocation"
|
|
- bottleneck_prediction: "Predict potential project bottlenecks"
|
|
|
|
quality_prediction:
|
|
- defect_density_prediction: "Predict defect rates and locations"
|
|
- technical_debt_accumulation: "Predict technical debt growth"
|
|
- maintainability_degradation: "Predict maintainability trends"
|
|
- performance_impact_prediction: "Predict performance implications"
|
|
- security_vulnerability_prediction: "Predict security vulnerability risks"
|
|
|
|
team_performance_prediction:
|
|
- productivity_forecasting: "Forecast team productivity trends"
|
|
- skill_gap_prediction: "Predict future skill requirements and gaps"
|
|
- collaboration_effectiveness: "Predict team collaboration outcomes"
|
|
- burnout_risk_assessment: "Assess team burnout risks"
|
|
- learning_curve_prediction: "Predict learning and adaptation timelines"
|
|
|
|
technology_trend_prediction:
|
|
- technology_adoption_forecasting: "Forecast technology adoption trends"
|
|
- compatibility_impact_prediction: "Predict technology compatibility issues"
|
|
- obsolescence_risk_assessment: "Assess technology obsolescence risks"
|
|
- performance_impact_prediction: "Predict technology performance impacts"
|
|
- learning_investment_prediction: "Predict learning investment requirements"
|
|
|
|
market_competitive_intelligence:
|
|
- market_trend_analysis: "Analyze market trends and implications"
|
|
- competitive_landscape_prediction: "Predict competitive landscape changes"
|
|
- user_demand_forecasting: "Forecast user demand and preferences"
|
|
- feature_priority_prediction: "Predict feature importance and priority"
|
|
- market_timing_optimization: "Predict optimal market timing"
|
|
|
|
prediction_techniques:
|
|
statistical_modeling:
|
|
- time_series_analysis: "Analyze trends over time"
|
|
- regression_analysis: "Model relationships between variables"
|
|
- correlation_analysis: "Identify correlations and dependencies"
|
|
- clustering_analysis: "Group similar patterns and outcomes"
|
|
- survival_analysis: "Predict time-to-event outcomes"
|
|
|
|
machine_learning_models:
|
|
- supervised_learning: "Learn from labeled historical data"
|
|
- unsupervised_learning: "Discover hidden patterns in data"
|
|
- reinforcement_learning: "Learn optimal decisions through experience"
|
|
- ensemble_methods: "Combine multiple models for better predictions"
|
|
- deep_learning: "Complex pattern recognition and prediction"
|
|
|
|
simulation_modeling:
|
|
- monte_carlo_simulation: "Model uncertainty and variability"
|
|
- agent_based_modeling: "Model complex system interactions"
|
|
- discrete_event_simulation: "Model process flows and bottlenecks"
|
|
- scenario_planning: "Model different future scenarios"
|
|
- sensitivity_analysis: "Assess impact of variable changes"
|
|
|
|
expert_systems:
|
|
- rule_based_prediction: "Apply expert knowledge rules"
|
|
- fuzzy_logic_systems: "Handle uncertainty and imprecision"
|
|
- knowledge_graphs: "Leverage connected knowledge for predictions"
|
|
- ontology_based_reasoning: "Use structured knowledge for inference"
|
|
- case_based_reasoning: "Learn from similar historical cases"
|
|
|
|
intelligence_capabilities:
|
|
early_warning_systems:
|
|
- risk_early_detection: "Detect risks before they materialize"
|
|
- trend_deviation_alerts: "Alert on deviations from expected trends"
|
|
- threshold_monitoring: "Monitor against defined thresholds"
|
|
- anomaly_detection: "Detect unusual patterns and outliers"
|
|
- predictive_alerting: "Alert on predicted future issues"
|
|
|
|
decision_support:
|
|
- alternative_scenario_analysis: "Analyze different decision alternatives"
|
|
- impact_assessment: "Assess impact of different decisions"
|
|
- optimization_recommendations: "Recommend optimal decisions"
|
|
- trade_off_analysis: "Analyze trade-offs between options"
|
|
- strategic_planning_support: "Support long-term strategic planning"
|
|
|
|
adaptive_intelligence:
|
|
- model_self_improvement: "Improve prediction models over time"
|
|
- context_adaptation: "Adapt predictions to changing contexts"
|
|
- feedback_integration: "Learn from prediction accuracy feedback"
|
|
- domain_specialization: "Specialize in specific domains over time"
|
|
- cross_domain_learning: "Transfer learning across domains"
|
|
```
|
|
|
|
#### Predictive Intelligence Implementation
|
|
```python
|
|
import numpy as np
|
|
import pandas as pd
|
|
from typing import Dict, List, Any, Optional, Tuple, Union
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
from datetime import datetime, timedelta
|
|
import asyncio
|
|
import json
|
|
import pickle
|
|
from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor
|
|
from sklearn.linear_model import LinearRegression, LogisticRegression
|
|
from sklearn.model_selection import train_test_split, cross_val_score
|
|
from sklearn.metrics import mean_squared_error, accuracy_score, classification_report
|
|
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
|
import xgboost as xgb
|
|
import lightgbm as lgb
|
|
from scipy import stats
|
|
from statsmodels.tsa.arima.model import ARIMA
|
|
from statsmodels.tsa.holtwinters import ExponentialSmoothing
|
|
import warnings
|
|
warnings.filterwarnings('ignore')
|
|
|
|
class PredictionType(Enum):
|
|
SUCCESS_PROBABILITY = "success_probability"
|
|
TIMELINE_ESTIMATION = "timeline_estimation"
|
|
QUALITY_PREDICTION = "quality_prediction"
|
|
RISK_ASSESSMENT = "risk_assessment"
|
|
EFFORT_ESTIMATION = "effort_estimation"
|
|
PERFORMANCE_PREDICTION = "performance_prediction"
|
|
|
|
class PredictionConfidence(Enum):
|
|
VERY_HIGH = "very_high"
|
|
HIGH = "high"
|
|
MEDIUM = "medium"
|
|
LOW = "low"
|
|
VERY_LOW = "very_low"
|
|
|
|
class TimeHorizon(Enum):
|
|
SHORT_TERM = "short_term" # 1-4 weeks
|
|
MEDIUM_TERM = "medium_term" # 1-6 months
|
|
LONG_TERM = "long_term" # 6+ months
|
|
|
|
@dataclass
|
|
class PredictionInput:
|
|
"""
|
|
Input data for making predictions
|
|
"""
|
|
prediction_type: PredictionType
|
|
context: Dict[str, Any]
|
|
historical_data: Dict[str, Any] = field(default_factory=dict)
|
|
current_metrics: Dict[str, Any] = field(default_factory=dict)
|
|
project_characteristics: Dict[str, Any] = field(default_factory=dict)
|
|
team_characteristics: Dict[str, Any] = field(default_factory=dict)
|
|
time_horizon: TimeHorizon = TimeHorizon.MEDIUM_TERM
|
|
|
|
@dataclass
|
|
class PredictionResult:
|
|
"""
|
|
Result of a prediction analysis
|
|
"""
|
|
prediction_id: str
|
|
prediction_type: PredictionType
|
|
predicted_value: Union[float, str, Dict[str, Any]]
|
|
confidence_level: PredictionConfidence
|
|
confidence_score: float
|
|
time_horizon: TimeHorizon
|
|
contributing_factors: List[Dict[str, Any]] = field(default_factory=list)
|
|
scenarios: List[Dict[str, Any]] = field(default_factory=list)
|
|
recommendations: List[str] = field(default_factory=list)
|
|
uncertainty_range: Optional[Tuple[float, float]] = None
|
|
prediction_timestamp: datetime = field(default_factory=datetime.utcnow)
|
|
|
|
@dataclass
|
|
class TrendAnalysis:
|
|
"""
|
|
Results of trend analysis
|
|
"""
|
|
trend_id: str
|
|
metric_name: str
|
|
trend_direction: str # increasing, decreasing, stable, volatile
|
|
trend_strength: float
|
|
seasonal_patterns: Dict[str, Any] = field(default_factory=dict)
|
|
forecast_values: List[float] = field(default_factory=list)
|
|
forecast_dates: List[datetime] = field(default_factory=list)
|
|
change_points: List[datetime] = field(default_factory=list)
|
|
|
|
class PredictiveDevelopmentIntelligence:
|
|
"""
|
|
Advanced predictive intelligence system for development projects
|
|
"""
|
|
|
|
def __init__(self, config=None):
|
|
self.config = config or {
|
|
'prediction_confidence_threshold': 0.7,
|
|
'model_retrain_frequency_days': 30,
|
|
'ensemble_voting': True,
|
|
'cross_validation_folds': 5,
|
|
'feature_importance_threshold': 0.05,
|
|
'prediction_horizon_days': 90,
|
|
'uncertainty_quantification': True
|
|
}
|
|
|
|
# Prediction models
|
|
self.models = {}
|
|
self.model_performance = {}
|
|
self.feature_importance = {}
|
|
|
|
# Specialized predictors
|
|
self.timeline_predictor = TimelinePredictor(self.config)
|
|
self.quality_predictor = QualityPredictor(self.config)
|
|
self.risk_predictor = RiskPredictor(self.config)
|
|
self.team_performance_predictor = TeamPerformancePredictor(self.config)
|
|
self.technology_trend_predictor = TechnologyTrendPredictor(self.config)
|
|
|
|
# Analysis engines
|
|
self.trend_analyzer = TrendAnalyzer(self.config)
|
|
self.scenario_modeler = ScenarioModeler(self.config)
|
|
self.decision_optimizer = DecisionOptimizer(self.config)
|
|
|
|
# Data management
|
|
self.historical_data = {}
|
|
self.prediction_history = []
|
|
self.model_training_data = defaultdict(list)
|
|
|
|
# Adaptive learning
|
|
self.prediction_feedback = []
|
|
self.model_adaptation_engine = ModelAdaptationEngine(self.config)
|
|
|
|
async def make_prediction(self, prediction_input: PredictionInput):
|
|
"""
|
|
Make a comprehensive prediction based on input data
|
|
"""
|
|
prediction_session = {
|
|
'session_id': generate_uuid(),
|
|
'start_time': datetime.utcnow(),
|
|
'prediction_input': prediction_input,
|
|
'prediction_result': None,
|
|
'model_used': None,
|
|
'feature_analysis': {},
|
|
'uncertainty_analysis': {}
|
|
}
|
|
|
|
try:
|
|
# Prepare features for prediction
|
|
features = await self.prepare_prediction_features(prediction_input)
|
|
prediction_session['features'] = features
|
|
|
|
# Select optimal model for prediction type
|
|
model = await self.select_optimal_model(prediction_input.prediction_type, features)
|
|
prediction_session['model_used'] = model['model_info']
|
|
|
|
# Make prediction
|
|
if prediction_input.prediction_type == PredictionType.SUCCESS_PROBABILITY:
|
|
prediction_result = await self.predict_project_success(features, model)
|
|
elif prediction_input.prediction_type == PredictionType.TIMELINE_ESTIMATION:
|
|
prediction_result = await self.timeline_predictor.predict_timeline(prediction_input)
|
|
elif prediction_input.prediction_type == PredictionType.QUALITY_PREDICTION:
|
|
prediction_result = await self.quality_predictor.predict_quality(prediction_input)
|
|
elif prediction_input.prediction_type == PredictionType.RISK_ASSESSMENT:
|
|
prediction_result = await self.risk_predictor.assess_risks(prediction_input)
|
|
elif prediction_input.prediction_type == PredictionType.EFFORT_ESTIMATION:
|
|
prediction_result = await self.predict_effort_estimation(features, model)
|
|
elif prediction_input.prediction_type == PredictionType.PERFORMANCE_PREDICTION:
|
|
prediction_result = await self.predict_performance_metrics(features, model)
|
|
else:
|
|
prediction_result = await self.make_generic_prediction(features, model, prediction_input)
|
|
|
|
# Perform uncertainty quantification
|
|
if self.config['uncertainty_quantification']:
|
|
uncertainty_analysis = await self.quantify_prediction_uncertainty(
|
|
prediction_result,
|
|
features,
|
|
model
|
|
)
|
|
prediction_session['uncertainty_analysis'] = uncertainty_analysis
|
|
prediction_result.uncertainty_range = uncertainty_analysis.get('confidence_interval')
|
|
|
|
# Analyze contributing factors
|
|
contributing_factors = await self.analyze_contributing_factors(
|
|
features,
|
|
model,
|
|
prediction_result
|
|
)
|
|
prediction_result.contributing_factors = contributing_factors
|
|
|
|
# Generate scenarios
|
|
scenarios = await self.scenario_modeler.generate_scenarios(
|
|
prediction_input,
|
|
prediction_result
|
|
)
|
|
prediction_result.scenarios = scenarios
|
|
|
|
# Generate recommendations
|
|
recommendations = await self.generate_prediction_recommendations(
|
|
prediction_input,
|
|
prediction_result
|
|
)
|
|
prediction_result.recommendations = recommendations
|
|
|
|
prediction_session['prediction_result'] = prediction_result
|
|
|
|
except Exception as e:
|
|
prediction_session['error'] = str(e)
|
|
|
|
finally:
|
|
prediction_session['end_time'] = datetime.utcnow()
|
|
prediction_session['prediction_duration'] = (
|
|
prediction_session['end_time'] - prediction_session['start_time']
|
|
).total_seconds()
|
|
|
|
# Store prediction history
|
|
self.prediction_history.append(prediction_session)
|
|
|
|
return prediction_session
|
|
|
|
async def prepare_prediction_features(self, prediction_input: PredictionInput):
|
|
"""
|
|
Prepare and engineer features for prediction
|
|
"""
|
|
features = {
|
|
'basic_features': {},
|
|
'engineered_features': {},
|
|
'contextual_features': {},
|
|
'temporal_features': {}
|
|
}
|
|
|
|
# Extract basic features from input
|
|
basic_features = {
|
|
'project_size': prediction_input.project_characteristics.get('size_metrics', {}).get('total_files', 0),
|
|
'team_size': prediction_input.team_characteristics.get('team_size', 5),
|
|
'complexity_score': prediction_input.current_metrics.get('complexity_score', 0),
|
|
'duration_weeks': prediction_input.project_characteristics.get('planned_duration_weeks', 12),
|
|
'technology_count': len(prediction_input.project_characteristics.get('technologies', [])),
|
|
'previous_projects': prediction_input.team_characteristics.get('previous_projects', 0)
|
|
}
|
|
features['basic_features'] = basic_features
|
|
|
|
# Engineer features based on historical data
|
|
engineered_features = await self.engineer_advanced_features(
|
|
prediction_input,
|
|
basic_features
|
|
)
|
|
features['engineered_features'] = engineered_features
|
|
|
|
# Extract contextual features
|
|
contextual_features = {
|
|
'domain_complexity': self.assess_domain_complexity(prediction_input.context.get('domain', 'web')),
|
|
'market_pressure': prediction_input.context.get('market_pressure', 'medium'),
|
|
'regulatory_requirements': len(prediction_input.context.get('regulations', [])),
|
|
'integration_complexity': len(prediction_input.project_characteristics.get('integrations', [])),
|
|
'innovation_level': prediction_input.context.get('innovation_level', 'medium')
|
|
}
|
|
features['contextual_features'] = contextual_features
|
|
|
|
# Extract temporal features
|
|
current_date = datetime.utcnow()
|
|
temporal_features = {
|
|
'quarter': current_date.quarter,
|
|
'month': current_date.month,
|
|
'day_of_year': current_date.timetuple().tm_yday,
|
|
'is_holiday_season': current_date.month in [11, 12, 1],
|
|
'project_phase': prediction_input.context.get('project_phase', 'development'),
|
|
'time_since_start_weeks': prediction_input.context.get('weeks_elapsed', 0)
|
|
}
|
|
features['temporal_features'] = temporal_features
|
|
|
|
return features
|
|
|
|
def assess_domain_complexity(self, domain):
|
|
"""
|
|
Assess complexity level of the application domain
|
|
"""
|
|
domain_complexity_map = {
|
|
'web': 0.3,
|
|
'mobile': 0.4,
|
|
'enterprise': 0.7,
|
|
'fintech': 0.8,
|
|
'healthcare': 0.9,
|
|
'aerospace': 1.0,
|
|
'ai_ml': 0.8,
|
|
'blockchain': 0.9,
|
|
'iot': 0.7,
|
|
'gaming': 0.6
|
|
}
|
|
return domain_complexity_map.get(domain.lower(), 0.5)
|
|
|
|
async def engineer_advanced_features(self, prediction_input, basic_features):
|
|
"""
|
|
Engineer advanced features from basic features and historical data
|
|
"""
|
|
engineered_features = {}
|
|
|
|
# Velocity-based features
|
|
if prediction_input.historical_data.get('velocity_history'):
|
|
velocity_data = prediction_input.historical_data['velocity_history']
|
|
engineered_features.update({
|
|
'avg_velocity': np.mean(velocity_data),
|
|
'velocity_trend': self.calculate_trend(velocity_data),
|
|
'velocity_variance': np.var(velocity_data),
|
|
'velocity_stability': 1.0 / (1.0 + np.var(velocity_data))
|
|
})
|
|
|
|
# Quality-based features
|
|
if prediction_input.historical_data.get('quality_metrics'):
|
|
quality_data = prediction_input.historical_data['quality_metrics']
|
|
engineered_features.update({
|
|
'quality_trend': self.calculate_trend(quality_data.get('overall_scores', [])),
|
|
'defect_rate_trend': self.calculate_trend(quality_data.get('defect_rates', [])),
|
|
'test_coverage_trend': self.calculate_trend(quality_data.get('coverage_scores', []))
|
|
})
|
|
|
|
# Complexity-based features
|
|
engineered_features.update({
|
|
'complexity_per_developer': basic_features['complexity_score'] / max(basic_features['team_size'], 1),
|
|
'size_complexity_ratio': basic_features['project_size'] / max(basic_features['complexity_score'], 1),
|
|
'team_project_ratio': basic_features['team_size'] / max(basic_features['duration_weeks'], 1)
|
|
})
|
|
|
|
# Experience-based features
|
|
team_experience = prediction_input.team_characteristics.get('average_experience_years', 3)
|
|
engineered_features.update({
|
|
'experience_complexity_ratio': team_experience / max(basic_features['complexity_score'], 1),
|
|
'experience_size_ratio': team_experience / max(basic_features['project_size'] / 100, 1),
|
|
'experience_adequacy': min(team_experience / 3.0, 1.0) # Normalized to 3 years
|
|
})
|
|
|
|
return engineered_features
|
|
|
|
def calculate_trend(self, data_series):
|
|
"""
|
|
Calculate trend direction and strength for a data series
|
|
"""
|
|
if len(data_series) < 2:
|
|
return 0.0
|
|
|
|
x = np.arange(len(data_series))
|
|
y = np.array(data_series)
|
|
|
|
# Linear regression to find trend
|
|
slope, _, r_value, _, _ = stats.linregress(x, y)
|
|
|
|
# Return trend strength (-1 to 1, negative = declining, positive = improving)
|
|
return slope * r_value
|
|
|
|
async def select_optimal_model(self, prediction_type, features):
|
|
"""
|
|
Select the optimal model for the given prediction type and features
|
|
"""
|
|
model_key = f"{prediction_type.value}_model"
|
|
|
|
if model_key not in self.models:
|
|
# Initialize model if not exists
|
|
await self.initialize_model(prediction_type)
|
|
|
|
model_info = {
|
|
'model_type': self.models[model_key]['type'],
|
|
'model_performance': self.model_performance.get(model_key, {}),
|
|
'feature_count': len(self.flatten_features(features)),
|
|
'last_trained': self.models[model_key].get('last_trained'),
|
|
'prediction_count': self.models[model_key].get('prediction_count', 0)
|
|
}
|
|
|
|
return {
|
|
'model': self.models[model_key]['model'],
|
|
'scaler': self.models[model_key].get('scaler'),
|
|
'model_info': model_info
|
|
}
|
|
|
|
def flatten_features(self, features):
|
|
"""
|
|
Flatten nested feature dictionary into a single vector
|
|
"""
|
|
flattened = {}
|
|
for category, feature_dict in features.items():
|
|
if isinstance(feature_dict, dict):
|
|
for key, value in feature_dict.items():
|
|
if isinstance(value, (int, float)):
|
|
flattened[f"{category}_{key}"] = value
|
|
elif isinstance(value, str):
|
|
# Simple encoding for categorical variables
|
|
flattened[f"{category}_{key}_encoded"] = hash(value) % 1000 / 1000.0
|
|
return flattened
|
|
|
|
async def initialize_model(self, prediction_type):
|
|
"""
|
|
Initialize a prediction model for the given type
|
|
"""
|
|
model_key = f"{prediction_type.value}_model"
|
|
|
|
if prediction_type in [PredictionType.SUCCESS_PROBABILITY, PredictionType.RISK_ASSESSMENT]:
|
|
# Classification models
|
|
model = GradientBoostingClassifier(n_estimators=100, random_state=42)
|
|
model_type = 'classification'
|
|
else:
|
|
# Regression models
|
|
model = GradientBoostingRegressor(n_estimators=100, random_state=42)
|
|
model_type = 'regression'
|
|
|
|
scaler = StandardScaler()
|
|
|
|
self.models[model_key] = {
|
|
'model': model,
|
|
'scaler': scaler,
|
|
'type': model_type,
|
|
'last_trained': None,
|
|
'prediction_count': 0
|
|
}
|
|
|
|
# Train with available data if any
|
|
if self.model_training_data[model_key]:
|
|
await self.retrain_model(prediction_type)
|
|
|
|
async def predict_project_success(self, features, model):
|
|
"""
|
|
Predict project success probability
|
|
"""
|
|
# Flatten features for model input
|
|
feature_vector = self.flatten_features(features)
|
|
X = np.array(list(feature_vector.values())).reshape(1, -1)
|
|
|
|
# Scale features if scaler is available
|
|
if model['scaler'] is not None:
|
|
X = model['scaler'].transform(X)
|
|
|
|
# Make prediction
|
|
if hasattr(model['model'], 'predict_proba'):
|
|
success_probability = model['model'].predict_proba(X)[0][1] # Probability of success class
|
|
else:
|
|
# Fallback for models without predict_proba
|
|
success_probability = max(0, min(1, model['model'].predict(X)[0]))
|
|
|
|
# Determine confidence level
|
|
confidence_score = abs(success_probability - 0.5) * 2 # Distance from uncertainty
|
|
confidence_level = self.determine_confidence_level(confidence_score)
|
|
|
|
prediction_result = PredictionResult(
|
|
prediction_id=generate_uuid(),
|
|
prediction_type=PredictionType.SUCCESS_PROBABILITY,
|
|
predicted_value=success_probability,
|
|
confidence_level=confidence_level,
|
|
confidence_score=confidence_score,
|
|
time_horizon=TimeHorizon.MEDIUM_TERM
|
|
)
|
|
|
|
return prediction_result
|
|
|
|
async def predict_effort_estimation(self, features, model):
|
|
"""
|
|
Predict development effort in person-hours
|
|
"""
|
|
feature_vector = self.flatten_features(features)
|
|
X = np.array(list(feature_vector.values())).reshape(1, -1)
|
|
|
|
if model['scaler'] is not None:
|
|
X = model['scaler'].transform(X)
|
|
|
|
estimated_hours = max(0, model['model'].predict(X)[0])
|
|
|
|
# Calculate confidence based on model performance
|
|
confidence_score = self.model_performance.get(f"effort_estimation_model", {}).get('accuracy', 0.5)
|
|
confidence_level = self.determine_confidence_level(confidence_score)
|
|
|
|
prediction_result = PredictionResult(
|
|
prediction_id=generate_uuid(),
|
|
prediction_type=PredictionType.EFFORT_ESTIMATION,
|
|
predicted_value=estimated_hours,
|
|
confidence_level=confidence_level,
|
|
confidence_score=confidence_score,
|
|
time_horizon=TimeHorizon.SHORT_TERM
|
|
)
|
|
|
|
return prediction_result
|
|
|
|
def determine_confidence_level(self, confidence_score):
|
|
"""
|
|
Determine confidence level based on numerical score
|
|
"""
|
|
if confidence_score >= 0.9:
|
|
return PredictionConfidence.VERY_HIGH
|
|
elif confidence_score >= 0.8:
|
|
return PredictionConfidence.HIGH
|
|
elif confidence_score >= 0.6:
|
|
return PredictionConfidence.MEDIUM
|
|
elif confidence_score >= 0.4:
|
|
return PredictionConfidence.LOW
|
|
else:
|
|
return PredictionConfidence.VERY_LOW
|
|
|
|
async def analyze_contributing_factors(self, features, model, prediction_result):
|
|
"""
|
|
Analyze factors contributing to the prediction
|
|
"""
|
|
contributing_factors = []
|
|
|
|
# Get feature importance if available
|
|
feature_vector = self.flatten_features(features)
|
|
feature_names = list(feature_vector.keys())
|
|
|
|
if hasattr(model['model'], 'feature_importances_'):
|
|
importances = model['model'].feature_importances_
|
|
|
|
# Sort features by importance
|
|
feature_importance_pairs = list(zip(feature_names, importances))
|
|
feature_importance_pairs.sort(key=lambda x: x[1], reverse=True)
|
|
|
|
# Top contributing factors
|
|
for feature_name, importance in feature_importance_pairs[:5]:
|
|
if importance > self.config['feature_importance_threshold']:
|
|
contributing_factors.append({
|
|
'factor': feature_name,
|
|
'importance': importance,
|
|
'value': feature_vector[feature_name],
|
|
'impact': 'positive' if importance > 0 else 'negative',
|
|
'description': self.generate_factor_description(feature_name, feature_vector[feature_name])
|
|
})
|
|
|
|
return contributing_factors
|
|
|
|
def generate_factor_description(self, feature_name, feature_value):
|
|
"""
|
|
Generate human-readable description for a contributing factor
|
|
"""
|
|
descriptions = {
|
|
'basic_features_team_size': f"Team size of {feature_value:.0f} members",
|
|
'basic_features_complexity_score': f"Complexity score of {feature_value:.2f}",
|
|
'basic_features_project_size': f"Project size of {feature_value:.0f} files",
|
|
'engineered_features_experience_adequacy': f"Team experience adequacy: {feature_value:.2f}",
|
|
'contextual_features_domain_complexity': f"Domain complexity level: {feature_value:.2f}",
|
|
'temporal_features_project_phase': f"Current project phase impact"
|
|
}
|
|
|
|
return descriptions.get(feature_name, f"{feature_name}: {feature_value}")
|
|
|
|
async def generate_prediction_recommendations(self, prediction_input, prediction_result):
|
|
"""
|
|
Generate actionable recommendations based on prediction
|
|
"""
|
|
recommendations = []
|
|
|
|
if prediction_result.prediction_type == PredictionType.SUCCESS_PROBABILITY:
|
|
success_prob = prediction_result.predicted_value
|
|
|
|
if success_prob < 0.6: # Low success probability
|
|
recommendations.extend([
|
|
"Consider reducing project scope to improve success probability",
|
|
"Increase team size or add experienced developers",
|
|
"Implement more frequent milestone reviews and risk assessments",
|
|
"Consider breaking the project into smaller, more manageable phases"
|
|
])
|
|
elif success_prob < 0.8: # Medium success probability
|
|
recommendations.extend([
|
|
"Monitor progress closely and implement early warning systems",
|
|
"Ensure adequate testing and quality assurance processes",
|
|
"Consider additional training for team members on key technologies"
|
|
])
|
|
else: # High success probability
|
|
recommendations.extend([
|
|
"Maintain current approach and team composition",
|
|
"Consider documenting best practices for future projects",
|
|
"Evaluate opportunities for accelerating delivery"
|
|
])
|
|
|
|
elif prediction_result.prediction_type == PredictionType.EFFORT_ESTIMATION:
|
|
estimated_hours = prediction_result.predicted_value
|
|
|
|
if estimated_hours > 2000: # Large effort estimate
|
|
recommendations.extend([
|
|
"Consider breaking down into smaller deliverables",
|
|
"Evaluate opportunities for code reuse and automation",
|
|
"Plan for adequate resource allocation and timeline",
|
|
"Implement robust project tracking and monitoring"
|
|
])
|
|
|
|
# Add confidence-based recommendations
|
|
if prediction_result.confidence_level in [PredictionConfidence.LOW, PredictionConfidence.VERY_LOW]:
|
|
recommendations.append(
|
|
"Gather more data and refine estimates as project progresses due to low prediction confidence"
|
|
)
|
|
|
|
return recommendations
|
|
|
|
class TimelinePredictor:
|
|
"""
|
|
Specialized predictor for project timeline estimation
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
|
|
async def predict_timeline(self, prediction_input: PredictionInput):
|
|
"""
|
|
Predict project timeline and milestones
|
|
"""
|
|
timeline_prediction = PredictionResult(
|
|
prediction_id=generate_uuid(),
|
|
prediction_type=PredictionType.TIMELINE_ESTIMATION,
|
|
predicted_value={},
|
|
confidence_level=PredictionConfidence.MEDIUM,
|
|
confidence_score=0.7,
|
|
time_horizon=TimeHorizon.LONG_TERM
|
|
)
|
|
|
|
# Extract timeline-relevant features
|
|
planned_duration = prediction_input.project_characteristics.get('planned_duration_weeks', 12)
|
|
team_size = prediction_input.team_characteristics.get('team_size', 5)
|
|
complexity = prediction_input.current_metrics.get('complexity_score', 0.5)
|
|
|
|
# Simple timeline prediction model (would be more sophisticated in practice)
|
|
complexity_factor = 1.0 + (complexity * 0.3)
|
|
team_efficiency = min(1.0, team_size / 5.0) # Optimal at 5 members
|
|
|
|
predicted_duration = planned_duration * complexity_factor / team_efficiency
|
|
|
|
# Add uncertainty based on project characteristics
|
|
uncertainty_factor = 0.2 + (complexity * 0.1)
|
|
|
|
timeline_prediction.predicted_value = {
|
|
'estimated_duration_weeks': predicted_duration,
|
|
'planned_duration_weeks': planned_duration,
|
|
'variance_weeks': predicted_duration * uncertainty_factor,
|
|
'completion_probability_on_time': max(0, 1 - (predicted_duration - planned_duration) / planned_duration)
|
|
}
|
|
|
|
timeline_prediction.uncertainty_range = (
|
|
predicted_duration * (1 - uncertainty_factor),
|
|
predicted_duration * (1 + uncertainty_factor)
|
|
)
|
|
|
|
return timeline_prediction
|
|
|
|
class QualityPredictor:
|
|
"""
|
|
Specialized predictor for code and project quality
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
|
|
async def predict_quality(self, prediction_input: PredictionInput):
|
|
"""
|
|
Predict final project quality metrics
|
|
"""
|
|
quality_prediction = PredictionResult(
|
|
prediction_id=generate_uuid(),
|
|
prediction_type=PredictionType.QUALITY_PREDICTION,
|
|
predicted_value={},
|
|
confidence_level=PredictionConfidence.MEDIUM,
|
|
confidence_score=0.75,
|
|
time_horizon=TimeHorizon.MEDIUM_TERM
|
|
)
|
|
|
|
# Extract quality-relevant features
|
|
team_experience = prediction_input.team_characteristics.get('average_experience_years', 3)
|
|
current_quality = prediction_input.current_metrics.get('quality_score', 0.7)
|
|
complexity = prediction_input.current_metrics.get('complexity_score', 0.5)
|
|
|
|
# Predict quality metrics
|
|
experience_factor = min(1.0, team_experience / 5.0) # Optimal at 5+ years
|
|
complexity_penalty = complexity * 0.2
|
|
|
|
predicted_code_quality = min(1.0, (current_quality * 0.7) + (experience_factor * 0.3) - complexity_penalty)
|
|
predicted_test_coverage = min(0.95, predicted_code_quality * 0.8 + 0.15)
|
|
predicted_defect_density = max(0.1, 2.0 * (1 - predicted_code_quality))
|
|
|
|
quality_prediction.predicted_value = {
|
|
'predicted_code_quality': predicted_code_quality,
|
|
'predicted_test_coverage': predicted_test_coverage,
|
|
'predicted_defect_density': predicted_defect_density,
|
|
'maintainability_score': predicted_code_quality * 0.9,
|
|
'technical_debt_risk': 1 - predicted_code_quality
|
|
}
|
|
|
|
return quality_prediction
|
|
|
|
class RiskPredictor:
|
|
"""
|
|
Specialized predictor for project risks
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
|
|
async def assess_risks(self, prediction_input: PredictionInput):
|
|
"""
|
|
Assess various project risks
|
|
"""
|
|
risk_assessment = PredictionResult(
|
|
prediction_id=generate_uuid(),
|
|
prediction_type=PredictionType.RISK_ASSESSMENT,
|
|
predicted_value={},
|
|
confidence_level=PredictionConfidence.HIGH,
|
|
confidence_score=0.8,
|
|
time_horizon=TimeHorizon.MEDIUM_TERM
|
|
)
|
|
|
|
# Assess different risk categories
|
|
risks = {
|
|
'schedule_risk': await self.assess_schedule_risk(prediction_input),
|
|
'quality_risk': await self.assess_quality_risk(prediction_input),
|
|
'technical_risk': await self.assess_technical_risk(prediction_input),
|
|
'team_risk': await self.assess_team_risk(prediction_input),
|
|
'external_risk': await self.assess_external_risk(prediction_input)
|
|
}
|
|
|
|
# Calculate overall risk score
|
|
risk_weights = {
|
|
'schedule_risk': 0.25,
|
|
'quality_risk': 0.25,
|
|
'technical_risk': 0.2,
|
|
'team_risk': 0.2,
|
|
'external_risk': 0.1
|
|
}
|
|
|
|
overall_risk = sum(risks[risk] * risk_weights[risk] for risk in risks)
|
|
|
|
risk_assessment.predicted_value = {
|
|
'overall_risk_score': overall_risk,
|
|
'risk_level': 'high' if overall_risk > 0.7 else 'medium' if overall_risk > 0.4 else 'low',
|
|
'individual_risks': risks,
|
|
'mitigation_priority': sorted(risks.items(), key=lambda x: x[1], reverse=True)[:3]
|
|
}
|
|
|
|
return risk_assessment
|
|
|
|
async def assess_schedule_risk(self, prediction_input):
|
|
"""Assess schedule-related risks"""
|
|
complexity = prediction_input.current_metrics.get('complexity_score', 0.5)
|
|
team_size = prediction_input.team_characteristics.get('team_size', 5)
|
|
duration = prediction_input.project_characteristics.get('planned_duration_weeks', 12)
|
|
|
|
# Higher complexity and longer duration increase schedule risk
|
|
schedule_risk = min(1.0, (complexity * 0.4) + (duration / 52) * 0.3 + (1 / max(team_size, 1)) * 0.3)
|
|
return schedule_risk
|
|
|
|
async def assess_quality_risk(self, prediction_input):
|
|
"""Assess quality-related risks"""
|
|
current_quality = prediction_input.current_metrics.get('quality_score', 0.7)
|
|
experience = prediction_input.team_characteristics.get('average_experience_years', 3)
|
|
|
|
# Lower current quality and less experience increase quality risk
|
|
quality_risk = max(0, 1 - current_quality - (experience / 10))
|
|
return min(1.0, quality_risk)
|
|
|
|
async def assess_technical_risk(self, prediction_input):
|
|
"""Assess technical risks"""
|
|
technologies = prediction_input.project_characteristics.get('technologies', [])
|
|
integrations = prediction_input.project_characteristics.get('integrations', [])
|
|
innovation_level = prediction_input.context.get('innovation_level', 'medium')
|
|
|
|
# More technologies and integrations increase technical risk
|
|
tech_risk_base = min(0.8, len(technologies) / 10 + len(integrations) / 5)
|
|
|
|
innovation_multiplier = {'low': 0.8, 'medium': 1.0, 'high': 1.3}.get(innovation_level, 1.0)
|
|
|
|
return min(1.0, tech_risk_base * innovation_multiplier)
|
|
|
|
async def assess_team_risk(self, prediction_input):
|
|
"""Assess team-related risks"""
|
|
team_size = prediction_input.team_characteristics.get('team_size', 5)
|
|
turnover_rate = prediction_input.team_characteristics.get('turnover_rate', 0.1)
|
|
remote_percentage = prediction_input.team_characteristics.get('remote_percentage', 0.0)
|
|
|
|
# Very small or very large teams, high turnover, and high remote percentage increase risk
|
|
size_risk = 0.2 if team_size < 3 else 0.1 if team_size > 15 else 0
|
|
turnover_risk = min(0.5, turnover_rate * 2)
|
|
remote_risk = remote_percentage * 0.2
|
|
|
|
return min(1.0, size_risk + turnover_risk + remote_risk)
|
|
|
|
async def assess_external_risk(self, prediction_input):
|
|
"""Assess external risks"""
|
|
market_pressure = prediction_input.context.get('market_pressure', 'medium')
|
|
regulatory_count = len(prediction_input.context.get('regulations', []))
|
|
dependency_count = len(prediction_input.project_characteristics.get('external_dependencies', []))
|
|
|
|
pressure_risk = {'low': 0.1, 'medium': 0.3, 'high': 0.6}.get(market_pressure, 0.3)
|
|
regulatory_risk = min(0.3, regulatory_count * 0.1)
|
|
dependency_risk = min(0.4, dependency_count * 0.05)
|
|
|
|
return min(1.0, pressure_risk + regulatory_risk + dependency_risk)
|
|
```
|
|
|
|
### Predictive Intelligence Commands
|
|
|
|
```bash
|
|
# Project outcome prediction
|
|
bmad predict success --project-context "current-state.json" --confidence-level
|
|
bmad predict timeline --features "project-metrics" --scenarios
|
|
bmad predict quality --current-metrics --team-characteristics
|
|
|
|
# Risk assessment and early warning
|
|
bmad predict risks --comprehensive --mitigation-suggestions
|
|
bmad predict failures --early-warning --probability-assessment
|
|
bmad predict bottlenecks --timeline --resource-constraints
|
|
|
|
# Effort and resource prediction
|
|
bmad predict effort --feature-list "backlog.json" --team-velocity
|
|
bmad predict resources --capacity-planning --skill-requirements
|
|
bmad predict costs --development-timeline --resource-allocation
|
|
|
|
# Performance and trend prediction
|
|
bmad predict performance --load-scenarios --scalability-analysis
|
|
bmad predict trends --metrics-history --forecast-horizon "6m"
|
|
bmad predict technology --adoption-trends --impact-assessment
|
|
|
|
# Decision support and optimization
|
|
bmad predict scenarios --alternative-approaches --outcome-comparison
|
|
bmad predict optimize --resource-allocation --timeline-quality-tradeoffs
|
|
bmad predict recommendations --strategic --tactical --operational
|
|
|
|
# Model management and improvement
|
|
bmad predict train --historical-data --model-type "timeline"
|
|
bmad predict validate --prediction-accuracy --model-performance
|
|
bmad predict insights --contributing-factors --improvement-opportunities
|
|
```
|
|
|
|
This Predictive Development Intelligence module provides sophisticated predictive analytics capabilities that help teams make better decisions, plan more effectively, and achieve better outcomes through data-driven insights, trend analysis, and intelligent forecasting.
|
|
|
|
<function_calls>
|
|
<invoke name="TodoWrite">
|
|
<parameter name="todos">[{"content": "Phase 1: Core Intelligence Foundation - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase1"}, {"content": "Phase 2: LLM Integration and Knowledge Management - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase2"}, {"content": "Phase 3: Advanced Intelligence and Claude Code Integration - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase3"}, {"content": "Create Autonomous Development Engine", "status": "completed", "priority": "high", "id": "3.1"}, {"content": "Implement Advanced Code Intelligence", "status": "completed", "priority": "high", "id": "3.2"}, {"content": "Build Self-Improving AI Capabilities", "status": "completed", "priority": "high", "id": "3.3"}, {"content": "Develop Intelligent Automation Framework", "status": "completed", "priority": "high", "id": "3.4"}, {"content": "Create Quality Assurance Automation", "status": "completed", "priority": "high", "id": "3.5"}, {"content": "Implement Performance Optimization Engine", "status": "completed", "priority": "high", "id": "3.6"}, {"content": "Build Predictive Development Intelligence", "status": "completed", "priority": "high", "id": "3.7"}, {"content": "Phase 4: Self-Optimization and Enterprise Features", "status": "pending", "priority": "medium", "id": "phase4"}] |