BMAD-METHOD/bmad-system/knowledge-discovery/pattern-mining-engine.md

31 KiB

Pattern Mining Engine

Automated Knowledge Discovery and Insight Generation for Enhanced BMAD System

The Pattern Mining Engine provides sophisticated automated discovery of patterns, trends, and insights from development activities, code repositories, and team collaboration data to generate actionable intelligence for software development.

Knowledge Discovery Architecture

Comprehensive Discovery Framework

pattern_mining_architecture:
  discovery_domains:
    code_pattern_mining:
      - structural_patterns: "AST-based code structure patterns"
      - semantic_patterns: "Meaning and intent patterns in code"
      - anti_patterns: "Code patterns leading to issues"
      - evolution_patterns: "How code patterns change over time"
      - performance_patterns: "Code patterns affecting performance"
      
    development_process_mining:
      - workflow_patterns: "Effective development workflow patterns"
      - collaboration_patterns: "Successful team collaboration patterns"
      - decision_patterns: "Patterns in technical decision making"
      - communication_patterns: "Effective communication patterns"
      - productivity_patterns: "Patterns leading to high productivity"
      
    project_success_mining:
      - success_factor_patterns: "Factors consistently leading to success"
      - failure_pattern_analysis: "Common patterns in project failures"
      - timeline_patterns: "Effective project timeline patterns"
      - resource_allocation_patterns: "Optimal resource usage patterns"
      - risk_mitigation_patterns: "Effective risk management patterns"
      
    technology_adoption_mining:
      - adoption_trend_patterns: "Technology adoption lifecycle patterns"
      - integration_patterns: "Successful technology integration patterns"
      - migration_patterns: "Effective technology migration patterns"
      - compatibility_patterns: "Technology compatibility insights"
      - learning_curve_patterns: "Technology learning and mastery patterns"
      
  mining_techniques:
    statistical_mining:
      - frequency_analysis: "Identify frequently occurring patterns"
      - correlation_analysis: "Find correlations between variables"
      - regression_analysis: "Predict outcomes based on patterns"
      - clustering_analysis: "Group similar patterns together"
      - time_series_analysis: "Analyze patterns over time"
      
    machine_learning_mining:
      - supervised_learning: "Pattern classification and prediction"
      - unsupervised_learning: "Pattern discovery without labels"
      - reinforcement_learning: "Learn optimal pattern applications"
      - deep_learning: "Complex pattern recognition"
      - ensemble_methods: "Combine multiple mining approaches"
      
    graph_mining:
      - network_analysis: "Analyze relationship networks"
      - community_detection: "Find pattern communities"
      - centrality_analysis: "Identify important pattern nodes"
      - path_analysis: "Analyze pattern propagation paths"
      - evolution_analysis: "Track pattern network evolution"
      
    text_mining:
      - natural_language_processing: "Extract patterns from text"
      - sentiment_analysis: "Analyze sentiment patterns"
      - topic_modeling: "Discover topic patterns"
      - entity_extraction: "Extract entity relationship patterns"
      - semantic_analysis: "Understand meaning patterns"
      
  insight_generation:
    predictive_insights:
      - success_prediction: "Predict project success likelihood"
      - failure_prediction: "Predict potential failure points"
      - performance_prediction: "Predict performance outcomes"
      - timeline_prediction: "Predict realistic timelines"
      - resource_prediction: "Predict resource requirements"
      
    prescriptive_insights:
      - optimization_recommendations: "Recommend optimization strategies"
      - process_improvements: "Suggest process improvements"
      - technology_recommendations: "Recommend technology choices"
      - team_recommendations: "Suggest team configurations"
      - architecture_recommendations: "Recommend architectural patterns"
      
    diagnostic_insights:
      - problem_identification: "Identify current problems"
      - root_cause_analysis: "Find root causes of issues"
      - bottleneck_identification: "Identify process bottlenecks"
      - risk_assessment: "Assess current risks"
      - quality_assessment: "Assess current quality levels"

Pattern Mining Engine Implementation

import numpy as np
import pandas as pd
from sklearn.cluster import DBSCAN, KMeans
from sklearn.ensemble import RandomForestClassifier, IsolationForest
from sklearn.decomposition import PCA, NMF
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
import networkx as nx
from scipy import stats
from collections import defaultdict, Counter
import ast
import re
from datetime import datetime, timedelta
import asyncio
from typing import Dict, List, Any, Optional, Tuple
import joblib

class PatternMiningEngine:
    """
    Advanced pattern mining and knowledge discovery engine
    """
    
    def __init__(self, config=None):
        self.config = config or {
            'min_pattern_frequency': 0.05,
            'pattern_confidence_threshold': 0.7,
            'anomaly_detection_threshold': 0.1,
            'time_window_days': 90,
            'max_patterns_per_category': 100
        }
        
        # Mining components
        self.code_pattern_miner = CodePatternMiner(self.config)
        self.process_pattern_miner = ProcessPatternMiner(self.config)
        self.success_pattern_miner = SuccessPatternMiner(self.config)
        self.technology_pattern_miner = TechnologyPatternMiner(self.config)
        
        # Analytics components
        self.statistical_analyzer = StatisticalAnalyzer()
        self.ml_analyzer = MachineLearningAnalyzer()
        self.graph_analyzer = GraphAnalyzer()
        self.text_analyzer = TextAnalyzer()
        
        # Insight generation
        self.insight_generator = InsightGenerator()
        self.prediction_engine = PredictionEngine()
        
        # Pattern storage
        self.discovered_patterns = {}
        self.pattern_history = []
        
    async def discover_patterns(self, data_sources, discovery_config=None):
        """
        Discover patterns across all domains from multiple data sources
        """
        if discovery_config is None:
            discovery_config = {
                'domains': ['code', 'process', 'success', 'technology'],
                'techniques': ['statistical', 'ml', 'graph', 'text'],
                'insight_types': ['predictive', 'prescriptive', 'diagnostic'],
                'time_range': {'start': None, 'end': None}
            }
        
        discovery_session = {
            'session_id': generate_uuid(),
            'start_time': datetime.utcnow(),
            'data_sources': data_sources,
            'discovery_config': discovery_config,
            'domain_patterns': {},
            'cross_domain_insights': {},
            'generated_insights': {}
        }
        
        # Discover patterns in each domain
        domain_tasks = []
        
        if 'code' in discovery_config['domains']:
            domain_tasks.append(
                self.discover_code_patterns(data_sources.get('code', {}), discovery_config)
            )
        
        if 'process' in discovery_config['domains']:
            domain_tasks.append(
                self.discover_process_patterns(data_sources.get('process', {}), discovery_config)
            )
        
        if 'success' in discovery_config['domains']:
            domain_tasks.append(
                self.discover_success_patterns(data_sources.get('success', {}), discovery_config)
            )
        
        if 'technology' in discovery_config['domains']:
            domain_tasks.append(
                self.discover_technology_patterns(data_sources.get('technology', {}), discovery_config)
            )
        
        # Execute pattern discovery in parallel
        domain_results = await asyncio.gather(*domain_tasks, return_exceptions=True)
        
        # Store domain patterns
        domain_names = [d for d in discovery_config['domains']]
        for i, result in enumerate(domain_results):
            if i < len(domain_names) and not isinstance(result, Exception):
                discovery_session['domain_patterns'][domain_names[i]] = result
        
        # Find cross-domain insights
        cross_domain_insights = await self.find_cross_domain_insights(
            discovery_session['domain_patterns'],
            discovery_config
        )
        discovery_session['cross_domain_insights'] = cross_domain_insights
        
        # Generate actionable insights
        generated_insights = await self.generate_actionable_insights(
            discovery_session['domain_patterns'],
            cross_domain_insights,
            discovery_config
        )
        discovery_session['generated_insights'] = generated_insights
        
        # Store patterns for future reference
        await self.store_discovered_patterns(discovery_session)
        
        discovery_session['end_time'] = datetime.utcnow()
        discovery_session['discovery_duration'] = (
            discovery_session['end_time'] - discovery_session['start_time']
        ).total_seconds()
        
        return discovery_session
    
    async def discover_code_patterns(self, code_data, discovery_config):
        """
        Discover patterns in code repositories and development activities
        """
        code_pattern_results = {
            'structural_patterns': {},
            'semantic_patterns': {},
            'anti_patterns': {},
            'evolution_patterns': {},
            'performance_patterns': {}
        }
        
        # Extract structural patterns using AST analysis
        if 'structural' in discovery_config.get('pattern_types', ['structural']):
            structural_patterns = await self.code_pattern_miner.mine_structural_patterns(
                code_data
            )
            code_pattern_results['structural_patterns'] = structural_patterns
        
        # Extract semantic patterns using NLP and code semantics
        if 'semantic' in discovery_config.get('pattern_types', ['semantic']):
            semantic_patterns = await self.code_pattern_miner.mine_semantic_patterns(
                code_data
            )
            code_pattern_results['semantic_patterns'] = semantic_patterns
        
        # Identify anti-patterns that lead to issues
        if 'anti_pattern' in discovery_config.get('pattern_types', ['anti_pattern']):
            anti_patterns = await self.code_pattern_miner.mine_anti_patterns(
                code_data
            )
            code_pattern_results['anti_patterns'] = anti_patterns
        
        # Analyze code evolution patterns
        if 'evolution' in discovery_config.get('pattern_types', ['evolution']):
            evolution_patterns = await self.code_pattern_miner.mine_evolution_patterns(
                code_data
            )
            code_pattern_results['evolution_patterns'] = evolution_patterns
        
        # Identify performance-related patterns
        if 'performance' in discovery_config.get('pattern_types', ['performance']):
            performance_patterns = await self.code_pattern_miner.mine_performance_patterns(
                code_data
            )
            code_pattern_results['performance_patterns'] = performance_patterns
        
        return code_pattern_results
    
    async def discover_success_patterns(self, success_data, discovery_config):
        """
        Discover patterns that lead to project and team success
        """
        success_pattern_results = {
            'success_factors': {},
            'failure_indicators': {},
            'timeline_patterns': {},
            'resource_patterns': {},
            'quality_patterns': {}
        }
        
        # Identify success factor patterns
        success_factors = await self.success_pattern_miner.mine_success_factors(
            success_data
        )
        success_pattern_results['success_factors'] = success_factors
        
        # Identify failure indicator patterns
        failure_indicators = await self.success_pattern_miner.mine_failure_indicators(
            success_data
        )
        success_pattern_results['failure_indicators'] = failure_indicators
        
        # Analyze timeline patterns
        timeline_patterns = await self.success_pattern_miner.mine_timeline_patterns(
            success_data
        )
        success_pattern_results['timeline_patterns'] = timeline_patterns
        
        # Analyze resource allocation patterns
        resource_patterns = await self.success_pattern_miner.mine_resource_patterns(
            success_data
        )
        success_pattern_results['resource_patterns'] = resource_patterns
        
        # Analyze quality patterns
        quality_patterns = await self.success_pattern_miner.mine_quality_patterns(
            success_data
        )
        success_pattern_results['quality_patterns'] = quality_patterns
        
        return success_pattern_results
    
    async def find_cross_domain_insights(self, domain_patterns, discovery_config):
        """
        Find insights that span across multiple domains
        """
        cross_domain_insights = {
            'code_process_correlations': {},
            'success_technology_patterns': {},
            'performance_quality_relationships': {},
            'evolution_adoption_trends': {}
        }
        
        # Analyze correlations between code patterns and process patterns
        if 'code' in domain_patterns and 'process' in domain_patterns:
            code_process_correlations = await self.analyze_code_process_correlations(
                domain_patterns['code'],
                domain_patterns['process']
            )
            cross_domain_insights['code_process_correlations'] = code_process_correlations
        
        # Analyze relationships between success patterns and technology patterns
        if 'success' in domain_patterns and 'technology' in domain_patterns:
            success_tech_patterns = await self.analyze_success_technology_relationships(
                domain_patterns['success'],
                domain_patterns['technology']
            )
            cross_domain_insights['success_technology_patterns'] = success_tech_patterns
        
        # Analyze performance-quality relationships
        performance_quality_relationships = await self.analyze_performance_quality_relationships(
            domain_patterns
        )
        cross_domain_insights['performance_quality_relationships'] = performance_quality_relationships
        
        # Analyze evolution and adoption trends
        evolution_adoption_trends = await self.analyze_evolution_adoption_trends(
            domain_patterns
        )
        cross_domain_insights['evolution_adoption_trends'] = evolution_adoption_trends
        
        return cross_domain_insights
    
    async def generate_actionable_insights(self, domain_patterns, cross_domain_insights, discovery_config):
        """
        Generate actionable insights from discovered patterns
        """
        actionable_insights = {
            'predictive_insights': {},
            'prescriptive_insights': {},
            'diagnostic_insights': {}
        }
        
        # Generate predictive insights
        if 'predictive' in discovery_config.get('insight_types', ['predictive']):
            predictive_insights = await self.insight_generator.generate_predictive_insights(
                domain_patterns,
                cross_domain_insights
            )
            actionable_insights['predictive_insights'] = predictive_insights
        
        # Generate prescriptive insights
        if 'prescriptive' in discovery_config.get('insight_types', ['prescriptive']):
            prescriptive_insights = await self.insight_generator.generate_prescriptive_insights(
                domain_patterns,
                cross_domain_insights
            )
            actionable_insights['prescriptive_insights'] = prescriptive_insights
        
        # Generate diagnostic insights
        if 'diagnostic' in discovery_config.get('insight_types', ['diagnostic']):
            diagnostic_insights = await self.insight_generator.generate_diagnostic_insights(
                domain_patterns,
                cross_domain_insights
            )
            actionable_insights['diagnostic_insights'] = diagnostic_insights
        
        return actionable_insights

class CodePatternMiner:
    """
    Specialized mining for code patterns and anti-patterns
    """
    
    def __init__(self, config):
        self.config = config
        self.ast_analyzer = ASTPatternAnalyzer()
        self.semantic_analyzer = SemanticCodeAnalyzer()
        
    async def mine_structural_patterns(self, code_data):
        """
        Mine structural patterns from code using AST analysis
        """
        structural_patterns = {
            'function_patterns': {},
            'class_patterns': {},
            'module_patterns': {},
            'architecture_patterns': {}
        }
        
        # Analyze function patterns
        function_patterns = await self.ast_analyzer.analyze_function_patterns(code_data)
        structural_patterns['function_patterns'] = function_patterns
        
        # Analyze class patterns
        class_patterns = await self.ast_analyzer.analyze_class_patterns(code_data)
        structural_patterns['class_patterns'] = class_patterns
        
        # Analyze module patterns
        module_patterns = await self.ast_analyzer.analyze_module_patterns(code_data)
        structural_patterns['module_patterns'] = module_patterns
        
        # Analyze architectural patterns
        architecture_patterns = await self.ast_analyzer.analyze_architecture_patterns(code_data)
        structural_patterns['architecture_patterns'] = architecture_patterns
        
        return structural_patterns
    
    async def mine_semantic_patterns(self, code_data):
        """
        Mine semantic patterns from code using NLP and semantic analysis
        """
        semantic_patterns = {
            'intent_patterns': {},
            'naming_patterns': {},
            'comment_patterns': {},
            'documentation_patterns': {}
        }
        
        # Analyze code intent patterns
        intent_patterns = await self.semantic_analyzer.analyze_intent_patterns(code_data)
        semantic_patterns['intent_patterns'] = intent_patterns
        
        # Analyze naming convention patterns
        naming_patterns = await self.semantic_analyzer.analyze_naming_patterns(code_data)
        semantic_patterns['naming_patterns'] = naming_patterns
        
        # Analyze comment patterns
        comment_patterns = await self.semantic_analyzer.analyze_comment_patterns(code_data)
        semantic_patterns['comment_patterns'] = comment_patterns
        
        # Analyze documentation patterns
        doc_patterns = await self.semantic_analyzer.analyze_documentation_patterns(code_data)
        semantic_patterns['documentation_patterns'] = doc_patterns
        
        return semantic_patterns
    
    async def mine_anti_patterns(self, code_data):
        """
        Identify anti-patterns that lead to technical debt and issues
        """
        anti_patterns = {
            'code_smells': {},
            'architectural_anti_patterns': {},
            'performance_anti_patterns': {},
            'security_anti_patterns': {}
        }
        
        # Detect code smells
        code_smells = await self.detect_code_smells(code_data)
        anti_patterns['code_smells'] = code_smells
        
        # Detect architectural anti-patterns
        arch_anti_patterns = await self.detect_architectural_anti_patterns(code_data)
        anti_patterns['architectural_anti_patterns'] = arch_anti_patterns
        
        # Detect performance anti-patterns
        perf_anti_patterns = await self.detect_performance_anti_patterns(code_data)
        anti_patterns['performance_anti_patterns'] = perf_anti_patterns
        
        # Detect security anti-patterns
        security_anti_patterns = await self.detect_security_anti_patterns(code_data)
        anti_patterns['security_anti_patterns'] = security_anti_patterns
        
        return anti_patterns
    
    async def detect_code_smells(self, code_data):
        """
        Detect various code smells in the codebase
        """
        code_smells = {
            'long_methods': [],
            'large_classes': [],
            'duplicate_code': [],
            'dead_code': [],
            'complex_conditionals': []
        }
        
        for file_path, file_content in code_data.items():
            try:
                # Parse AST
                tree = ast.parse(file_content)
                
                # Detect long methods
                long_methods = self.detect_long_methods(tree, file_path)
                code_smells['long_methods'].extend(long_methods)
                
                # Detect large classes
                large_classes = self.detect_large_classes(tree, file_path)
                code_smells['large_classes'].extend(large_classes)
                
                # Detect complex conditionals
                complex_conditionals = self.detect_complex_conditionals(tree, file_path)
                code_smells['complex_conditionals'].extend(complex_conditionals)
                
            except SyntaxError:
                # Skip files with syntax errors
                continue
        
        # Detect duplicate code across files
        duplicate_code = await self.detect_duplicate_code(code_data)
        code_smells['duplicate_code'] = duplicate_code
        
        return code_smells
    
    def detect_long_methods(self, tree, file_path):
        """
        Detect methods that are too long
        """
        long_methods = []
        max_lines = self.config.get('max_method_lines', 50)
        
        for node in ast.walk(tree):
            if isinstance(node, ast.FunctionDef):
                method_lines = node.end_lineno - node.lineno + 1
                if method_lines > max_lines:
                    long_methods.append({
                        'file': file_path,
                        'method': node.name,
                        'lines': method_lines,
                        'start_line': node.lineno,
                        'end_line': node.end_lineno,
                        'severity': 'high' if method_lines > max_lines * 2 else 'medium'
                    })
        
        return long_methods
    
    def detect_large_classes(self, tree, file_path):
        """
        Detect classes that are too large
        """
        large_classes = []
        max_methods = self.config.get('max_class_methods', 20)
        
        for node in ast.walk(tree):
            if isinstance(node, ast.ClassDef):
                method_count = sum(1 for child in node.body if isinstance(child, ast.FunctionDef))
                if method_count > max_methods:
                    large_classes.append({
                        'file': file_path,
                        'class': node.name,
                        'methods': method_count,
                        'start_line': node.lineno,
                        'severity': 'high' if method_count > max_methods * 2 else 'medium'
                    })
        
        return large_classes

class SuccessPatternMiner:
    """
    Mine patterns that lead to project and team success
    """
    
    def __init__(self, config):
        self.config = config
        
    async def mine_success_factors(self, success_data):
        """
        Mine factors that consistently lead to success
        """
        success_factors = {
            'team_factors': {},
            'process_factors': {},
            'technical_factors': {},
            'environmental_factors': {}
        }
        
        # Analyze team-related success factors
        team_factors = await self.analyze_team_success_factors(success_data)
        success_factors['team_factors'] = team_factors
        
        # Analyze process-related success factors
        process_factors = await self.analyze_process_success_factors(success_data)
        success_factors['process_factors'] = process_factors
        
        # Analyze technical success factors
        technical_factors = await self.analyze_technical_success_factors(success_data)
        success_factors['technical_factors'] = technical_factors
        
        # Analyze environmental success factors
        environmental_factors = await self.analyze_environmental_success_factors(success_data)
        success_factors['environmental_factors'] = environmental_factors
        
        return success_factors
    
    async def analyze_team_success_factors(self, success_data):
        """
        Analyze team-related factors that lead to success
        """
        team_factors = {
            'size_patterns': {},
            'skill_patterns': {},
            'collaboration_patterns': {},
            'communication_patterns': {}
        }
        
        # Get project data with success metrics
        projects = success_data.get('projects', [])
        
        # Analyze team size patterns
        size_success_correlation = {}
        for project in projects:
            team_size = project.get('team_size', 0)
            success_score = project.get('success_score', 0)
            
            size_bucket = self.bucket_team_size(team_size)
            if size_bucket not in size_success_correlation:
                size_success_correlation[size_bucket] = {'scores': [], 'count': 0}
            
            size_success_correlation[size_bucket]['scores'].append(success_score)
            size_success_correlation[size_bucket]['count'] += 1
        
        # Calculate average success by team size
        for size_bucket, data in size_success_correlation.items():
            if data['scores']:
                avg_success = np.mean(data['scores'])
                team_factors['size_patterns'][size_bucket] = {
                    'average_success': avg_success,
                    'project_count': data['count'],
                    'success_variance': np.var(data['scores'])
                }
        
        return team_factors
    
    def bucket_team_size(self, team_size):
        """
        Bucket team sizes for analysis
        """
        if team_size <= 3:
            return 'small'
        elif team_size <= 7:
            return 'medium'
        elif team_size <= 12:
            return 'large'
        else:
            return 'very_large'

class InsightGenerator:
    """
    Generate actionable insights from discovered patterns
    """
    
    def __init__(self):
        self.insight_templates = {
            'success_prediction': self.generate_success_prediction_insights,
            'optimization_recommendation': self.generate_optimization_insights,
            'risk_assessment': self.generate_risk_assessment_insights,
            'best_practice': self.generate_best_practice_insights
        }
    
    async def generate_predictive_insights(self, domain_patterns, cross_domain_insights):
        """
        Generate insights that predict future outcomes
        """
        predictive_insights = {
            'success_predictions': [],
            'risk_predictions': [],
            'performance_predictions': [],
            'timeline_predictions': []
        }
        
        # Generate success predictions
        if 'success' in domain_patterns:
            success_predictions = await self.generate_success_predictions(
                domain_patterns['success'],
                cross_domain_insights
            )
            predictive_insights['success_predictions'] = success_predictions
        
        # Generate risk predictions
        risk_predictions = await self.generate_risk_predictions(
            domain_patterns,
            cross_domain_insights
        )
        predictive_insights['risk_predictions'] = risk_predictions
        
        return predictive_insights
    
    async def generate_success_predictions(self, success_patterns, cross_domain_insights):
        """
        Generate predictions about project success
        """
        success_predictions = []
        
        # Analyze success factor patterns
        success_factors = success_patterns.get('success_factors', {})
        
        for factor_category, factors in success_factors.items():
            for factor_name, factor_data in factors.items():
                if factor_data.get('average_success', 0) > 0.8:  # High success correlation
                    prediction = {
                        'type': 'success_factor',
                        'factor': factor_name,
                        'category': factor_category,
                        'prediction': f"Projects with {factor_name} have {factor_data['average_success']*100:.1f}% higher success rate",
                        'confidence': min(factor_data.get('project_count', 0) / 100, 1.0),
                        'recommendation': f"Ensure {factor_name} is prioritized in project planning"
                    }
                    success_predictions.append(prediction)
        
        return success_predictions

Knowledge Discovery Commands

# Pattern mining and discovery
bmad discover patterns --domains "code,process,success" --time-range "90d"
bmad discover anti-patterns --codebase "src/" --severity "high"
bmad discover trends --technology-adoption --cross-project

# Insight generation
bmad insights generate --type "predictive" --focus "success-factors"
bmad insights analyze --correlations --cross-domain
bmad insights recommend --optimization --based-on-patterns

# Pattern analysis and exploration
bmad patterns explore --category "code-quality" --interactive
bmad patterns correlate --pattern1 "team-size" --pattern2 "success-rate"
bmad patterns export --discovered --format "detailed-report"

# Predictive analytics
bmad predict success --project-characteristics "current"
bmad predict risks --based-on-patterns --alert-threshold "high"
bmad predict performance --code-changes "recent" --model "ml-ensemble"

This Pattern Mining Engine provides sophisticated automated discovery of patterns and insights that can transform development practices by identifying what works, what doesn't, and what's likely to happen based on historical data and current trends.