752 lines
31 KiB
Markdown
752 lines
31 KiB
Markdown
# Federated Learning Engine
|
|
|
|
## Privacy-Preserving Cross-Project Learning for Enhanced BMAD System
|
|
|
|
The Federated Learning Engine enables secure, privacy-preserving learning across multiple projects, teams, and organizations while extracting valuable patterns and insights that benefit the entire development community.
|
|
|
|
### Federated Learning Architecture
|
|
|
|
#### Privacy-Preserving Learning Framework
|
|
```yaml
|
|
federated_learning_architecture:
|
|
privacy_preservation:
|
|
differential_privacy:
|
|
- noise_injection: "Add calibrated noise to protect individual data points"
|
|
- epsilon_budget: "Manage privacy budget across learning operations"
|
|
- composition_tracking: "Track cumulative privacy loss"
|
|
- adaptive_noise: "Adjust noise based on data sensitivity"
|
|
|
|
secure_aggregation:
|
|
- homomorphic_encryption: "Encrypt individual contributions"
|
|
- secure_multi_party_computation: "Compute without revealing data"
|
|
- federated_averaging: "Aggregate model updates securely"
|
|
- byzantine_tolerance: "Handle malicious participants"
|
|
|
|
data_anonymization:
|
|
- k_anonymity: "Ensure minimum group sizes for anonymity"
|
|
- l_diversity: "Ensure diversity in sensitive attributes"
|
|
- t_closeness: "Ensure distribution similarity"
|
|
- synthetic_data_generation: "Generate privacy-preserving synthetic data"
|
|
|
|
access_control:
|
|
- role_based_access: "Control access based on organizational roles"
|
|
- attribute_based_access: "Fine-grained access control"
|
|
- audit_logging: "Complete audit trail of data access"
|
|
- consent_management: "Manage data usage consent"
|
|
|
|
learning_domains:
|
|
pattern_aggregation:
|
|
- code_patterns: "Aggregate successful code patterns across projects"
|
|
- architectural_patterns: "Learn architectural decisions and outcomes"
|
|
- workflow_patterns: "Identify effective development workflows"
|
|
- collaboration_patterns: "Understand team collaboration effectiveness"
|
|
|
|
success_prediction:
|
|
- project_success_factors: "Identify factors leading to project success"
|
|
- technology_adoption_success: "Predict technology adoption outcomes"
|
|
- team_performance_indicators: "Understand team effectiveness patterns"
|
|
- timeline_accuracy_patterns: "Learn from project timeline experiences"
|
|
|
|
anti_pattern_detection:
|
|
- code_anti_patterns: "Identify patterns leading to technical debt"
|
|
- process_anti_patterns: "Detect ineffective process patterns"
|
|
- communication_anti_patterns: "Identify problematic communication patterns"
|
|
- decision_anti_patterns: "Learn from poor decision outcomes"
|
|
|
|
trend_analysis:
|
|
- technology_trends: "Track technology adoption and success rates"
|
|
- methodology_effectiveness: "Analyze development methodology outcomes"
|
|
- tool_effectiveness: "Understand tool adoption and satisfaction"
|
|
- skill_development_patterns: "Track team skill development paths"
|
|
|
|
federation_topology:
|
|
hierarchical_federation:
|
|
- team_level: "Learning within individual teams"
|
|
- project_level: "Learning across projects within organization"
|
|
- organization_level: "Learning across organizational boundaries"
|
|
- ecosystem_level: "Learning across the entire development ecosystem"
|
|
|
|
peer_to_peer_federation:
|
|
- direct_collaboration: "Direct learning between similar organizations"
|
|
- consortium_learning: "Learning within industry consortiums"
|
|
- open_source_federation: "Learning from open source contributions"
|
|
- academic_partnership: "Collaboration with research institutions"
|
|
```
|
|
|
|
#### Federated Learning Implementation
|
|
```python
|
|
import numpy as np
|
|
import hashlib
|
|
import cryptography
|
|
from cryptography.fernet import Fernet
|
|
import torch
|
|
import torch.nn as nn
|
|
from sklearn.ensemble import IsolationForest
|
|
from differential_privacy import LaplaceMechanism, GaussianMechanism
|
|
import asyncio
|
|
import json
|
|
from typing import Dict, List, Any, Optional
|
|
|
|
class FederatedLearningEngine:
|
|
"""
|
|
Privacy-preserving federated learning system for cross-project knowledge aggregation
|
|
"""
|
|
|
|
def __init__(self, privacy_config=None):
|
|
self.privacy_config = privacy_config or {
|
|
'epsilon': 1.0, # Differential privacy parameter
|
|
'delta': 1e-5, # Differential privacy parameter
|
|
'noise_multiplier': 1.1,
|
|
'max_grad_norm': 1.0,
|
|
'secure_aggregation': True
|
|
}
|
|
|
|
# Initialize privacy mechanisms
|
|
self.dp_mechanism = LaplaceMechanism(epsilon=self.privacy_config['epsilon'])
|
|
self.encryption_key = Fernet.generate_key()
|
|
self.encryptor = Fernet(self.encryption_key)
|
|
|
|
# Federation components
|
|
self.federation_participants = {}
|
|
self.learning_models = {}
|
|
self.aggregation_server = AggregationServer(self.privacy_config)
|
|
self.pattern_aggregator = PatternAggregator()
|
|
|
|
# Privacy budget tracking
|
|
self.privacy_budget = PrivacyBudgetTracker(
|
|
total_epsilon=self.privacy_config['epsilon'],
|
|
total_delta=self.privacy_config['delta']
|
|
)
|
|
|
|
async def initialize_federation(self, participant_configs):
|
|
"""
|
|
Initialize federated learning with multiple participants
|
|
"""
|
|
federation_setup = {
|
|
'federation_id': generate_uuid(),
|
|
'participants': {},
|
|
'learning_objectives': [],
|
|
'privacy_guarantees': {},
|
|
'aggregation_schedule': {}
|
|
}
|
|
|
|
# Register participants
|
|
for participant_id, config in participant_configs.items():
|
|
participant = await self.register_participant(participant_id, config)
|
|
federation_setup['participants'][participant_id] = participant
|
|
|
|
# Define learning objectives
|
|
learning_objectives = await self.define_learning_objectives(participant_configs)
|
|
federation_setup['learning_objectives'] = learning_objectives
|
|
|
|
# Establish privacy guarantees
|
|
privacy_guarantees = await self.establish_privacy_guarantees(participant_configs)
|
|
federation_setup['privacy_guarantees'] = privacy_guarantees
|
|
|
|
# Setup aggregation schedule
|
|
aggregation_schedule = await self.setup_aggregation_schedule(participant_configs)
|
|
federation_setup['aggregation_schedule'] = aggregation_schedule
|
|
|
|
return federation_setup
|
|
|
|
async def register_participant(self, participant_id, config):
|
|
"""
|
|
Register a participant in the federated learning network
|
|
"""
|
|
participant = {
|
|
'id': participant_id,
|
|
'organization': config.get('organization'),
|
|
'data_characteristics': await self.analyze_participant_data(config),
|
|
'privacy_requirements': config.get('privacy_requirements', {}),
|
|
'contribution_capacity': config.get('contribution_capacity', 'medium'),
|
|
'learning_interests': config.get('learning_interests', []),
|
|
'trust_level': config.get('trust_level', 'standard'),
|
|
'encryption_key': self.generate_participant_key(participant_id)
|
|
}
|
|
|
|
# Validate participant eligibility
|
|
eligibility = await self.validate_participant_eligibility(participant)
|
|
participant['eligible'] = eligibility
|
|
|
|
if eligibility['is_eligible']:
|
|
self.federation_participants[participant_id] = participant
|
|
|
|
# Initialize participant-specific learning models
|
|
await self.initialize_participant_models(participant_id, config)
|
|
|
|
return participant
|
|
|
|
async def federated_pattern_learning(self, learning_round_config):
|
|
"""
|
|
Execute privacy-preserving pattern learning across federation
|
|
"""
|
|
learning_round = {
|
|
'round_id': generate_uuid(),
|
|
'config': learning_round_config,
|
|
'participant_contributions': {},
|
|
'aggregated_patterns': {},
|
|
'privacy_metrics': {},
|
|
'learning_outcomes': {}
|
|
}
|
|
|
|
# Collect privacy-preserving contributions from participants
|
|
participant_tasks = []
|
|
for participant_id in self.federation_participants:
|
|
task = self.collect_participant_contribution(
|
|
participant_id,
|
|
learning_round_config
|
|
)
|
|
participant_tasks.append(task)
|
|
|
|
# Execute contribution collection in parallel
|
|
participant_contributions = await asyncio.gather(*participant_tasks)
|
|
|
|
# Store contributions
|
|
for contribution in participant_contributions:
|
|
learning_round['participant_contributions'][contribution['participant_id']] = contribution
|
|
|
|
# Secure aggregation of contributions
|
|
aggregated_patterns = await self.secure_pattern_aggregation(
|
|
participant_contributions,
|
|
learning_round_config
|
|
)
|
|
learning_round['aggregated_patterns'] = aggregated_patterns
|
|
|
|
# Calculate privacy metrics
|
|
privacy_metrics = await self.calculate_privacy_metrics(
|
|
participant_contributions,
|
|
aggregated_patterns
|
|
)
|
|
learning_round['privacy_metrics'] = privacy_metrics
|
|
|
|
# Derive learning outcomes
|
|
learning_outcomes = await self.derive_learning_outcomes(
|
|
aggregated_patterns,
|
|
learning_round_config
|
|
)
|
|
learning_round['learning_outcomes'] = learning_outcomes
|
|
|
|
# Distribute learning outcomes to participants
|
|
await self.distribute_learning_outcomes(
|
|
learning_outcomes,
|
|
self.federation_participants
|
|
)
|
|
|
|
return learning_round
|
|
|
|
async def collect_participant_contribution(self, participant_id, learning_config):
|
|
"""
|
|
Collect privacy-preserving contribution from a participant
|
|
"""
|
|
participant = self.federation_participants[participant_id]
|
|
|
|
contribution = {
|
|
'participant_id': participant_id,
|
|
'contribution_type': learning_config['learning_type'],
|
|
'privacy_preserved_data': {},
|
|
'local_patterns': {},
|
|
'aggregation_metadata': {}
|
|
}
|
|
|
|
# Extract local patterns with privacy preservation
|
|
if learning_config['learning_type'] == 'code_patterns':
|
|
local_patterns = await self.extract_privacy_preserved_code_patterns(
|
|
participant_id,
|
|
learning_config
|
|
)
|
|
elif learning_config['learning_type'] == 'success_patterns':
|
|
local_patterns = await self.extract_privacy_preserved_success_patterns(
|
|
participant_id,
|
|
learning_config
|
|
)
|
|
elif learning_config['learning_type'] == 'anti_patterns':
|
|
local_patterns = await self.extract_privacy_preserved_anti_patterns(
|
|
participant_id,
|
|
learning_config
|
|
)
|
|
else:
|
|
local_patterns = await self.extract_generic_privacy_preserved_patterns(
|
|
participant_id,
|
|
learning_config
|
|
)
|
|
|
|
contribution['local_patterns'] = local_patterns
|
|
|
|
# Apply differential privacy
|
|
dp_patterns = await self.apply_differential_privacy(
|
|
local_patterns,
|
|
participant['privacy_requirements']
|
|
)
|
|
contribution['privacy_preserved_data'] = dp_patterns
|
|
|
|
# Encrypt contribution for secure transmission
|
|
encrypted_contribution = await self.encrypt_contribution(
|
|
contribution,
|
|
participant['encryption_key']
|
|
)
|
|
|
|
return encrypted_contribution
|
|
|
|
async def extract_privacy_preserved_code_patterns(self, participant_id, learning_config):
|
|
"""
|
|
Extract code patterns with privacy preservation
|
|
"""
|
|
# Get participant's local code data
|
|
local_code_data = await self.get_participant_code_data(participant_id)
|
|
|
|
privacy_preserved_patterns = {
|
|
'pattern_types': {},
|
|
'frequency_distributions': {},
|
|
'success_correlations': {},
|
|
'anonymized_examples': {}
|
|
}
|
|
|
|
# Extract pattern types with k-anonymity
|
|
pattern_types = await self.extract_pattern_types_with_kanonymity(
|
|
local_code_data,
|
|
k=learning_config.get('k_anonymity', 5)
|
|
)
|
|
privacy_preserved_patterns['pattern_types'] = pattern_types
|
|
|
|
# Calculate frequency distributions with differential privacy
|
|
frequency_distributions = await self.calculate_dp_frequency_distributions(
|
|
local_code_data,
|
|
self.privacy_config['epsilon'] / 4 # Budget allocation
|
|
)
|
|
privacy_preserved_patterns['frequency_distributions'] = frequency_distributions
|
|
|
|
# Analyze success correlations with privacy preservation
|
|
success_correlations = await self.analyze_success_correlations_privately(
|
|
local_code_data,
|
|
self.privacy_config['epsilon'] / 4 # Budget allocation
|
|
)
|
|
privacy_preserved_patterns['success_correlations'] = success_correlations
|
|
|
|
# Generate anonymized examples
|
|
anonymized_examples = await self.generate_anonymized_code_examples(
|
|
local_code_data,
|
|
learning_config.get('max_examples', 10)
|
|
)
|
|
privacy_preserved_patterns['anonymized_examples'] = anonymized_examples
|
|
|
|
return privacy_preserved_patterns
|
|
|
|
async def secure_pattern_aggregation(self, participant_contributions, learning_config):
|
|
"""
|
|
Securely aggregate patterns from all participants
|
|
"""
|
|
aggregation_results = {
|
|
'global_patterns': {},
|
|
'consensus_patterns': {},
|
|
'divergent_patterns': {},
|
|
'confidence_scores': {}
|
|
}
|
|
|
|
# Decrypt contributions
|
|
decrypted_contributions = []
|
|
for contribution in participant_contributions:
|
|
decrypted = await self.decrypt_contribution(contribution)
|
|
decrypted_contributions.append(decrypted)
|
|
|
|
# Aggregate patterns using secure multi-party computation
|
|
if learning_config.get('use_secure_aggregation', True):
|
|
global_patterns = await self.secure_multiparty_aggregation(
|
|
decrypted_contributions
|
|
)
|
|
else:
|
|
global_patterns = await self.simple_aggregation(
|
|
decrypted_contributions
|
|
)
|
|
|
|
aggregation_results['global_patterns'] = global_patterns
|
|
|
|
# Identify consensus patterns (patterns agreed upon by majority)
|
|
consensus_patterns = await self.identify_consensus_patterns(
|
|
decrypted_contributions,
|
|
consensus_threshold=learning_config.get('consensus_threshold', 0.7)
|
|
)
|
|
aggregation_results['consensus_patterns'] = consensus_patterns
|
|
|
|
# Identify divergent patterns (patterns that vary significantly)
|
|
divergent_patterns = await self.identify_divergent_patterns(
|
|
decrypted_contributions,
|
|
divergence_threshold=learning_config.get('divergence_threshold', 0.5)
|
|
)
|
|
aggregation_results['divergent_patterns'] = divergent_patterns
|
|
|
|
# Calculate confidence scores for aggregated patterns
|
|
confidence_scores = await self.calculate_pattern_confidence_scores(
|
|
global_patterns,
|
|
decrypted_contributions
|
|
)
|
|
aggregation_results['confidence_scores'] = confidence_scores
|
|
|
|
return aggregation_results
|
|
|
|
async def apply_differential_privacy(self, patterns, privacy_requirements):
|
|
"""
|
|
Apply differential privacy to pattern data
|
|
"""
|
|
epsilon = privacy_requirements.get('epsilon', self.privacy_config['epsilon'])
|
|
sensitivity = privacy_requirements.get('sensitivity', 1.0)
|
|
|
|
dp_patterns = {}
|
|
|
|
for pattern_type, pattern_data in patterns.items():
|
|
if isinstance(pattern_data, dict):
|
|
# Handle frequency counts
|
|
if 'counts' in pattern_data:
|
|
noisy_counts = {}
|
|
for key, count in pattern_data['counts'].items():
|
|
noise = self.dp_mechanism.add_noise(count, sensitivity)
|
|
noisy_counts[key] = max(0, count + noise) # Ensure non-negative
|
|
dp_patterns[pattern_type] = {
|
|
**pattern_data,
|
|
'counts': noisy_counts
|
|
}
|
|
# Handle continuous values
|
|
elif 'values' in pattern_data:
|
|
noisy_values = []
|
|
for value in pattern_data['values']:
|
|
noise = self.dp_mechanism.add_noise(value, sensitivity)
|
|
noisy_values.append(value + noise)
|
|
dp_patterns[pattern_type] = {
|
|
**pattern_data,
|
|
'values': noisy_values
|
|
}
|
|
else:
|
|
# For other types, apply noise to numerical fields
|
|
dp_pattern_data = {}
|
|
for key, value in pattern_data.items():
|
|
if isinstance(value, (int, float)):
|
|
noise = self.dp_mechanism.add_noise(value, sensitivity)
|
|
dp_pattern_data[key] = value + noise
|
|
else:
|
|
dp_pattern_data[key] = value
|
|
dp_patterns[pattern_type] = dp_pattern_data
|
|
else:
|
|
# Handle simple numerical values
|
|
if isinstance(pattern_data, (int, float)):
|
|
noise = self.dp_mechanism.add_noise(pattern_data, sensitivity)
|
|
dp_patterns[pattern_type] = pattern_data + noise
|
|
else:
|
|
dp_patterns[pattern_type] = pattern_data
|
|
|
|
return dp_patterns
|
|
|
|
class PatternAggregator:
|
|
"""
|
|
Aggregates patterns across multiple participants while preserving privacy
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.aggregation_strategies = {
|
|
'frequency_aggregation': FrequencyAggregationStrategy(),
|
|
'weighted_aggregation': WeightedAggregationStrategy(),
|
|
'consensus_aggregation': ConsensusAggregationStrategy(),
|
|
'hierarchical_aggregation': HierarchicalAggregationStrategy()
|
|
}
|
|
|
|
async def aggregate_success_patterns(self, participant_patterns, aggregation_config):
|
|
"""
|
|
Aggregate success patterns across participants
|
|
"""
|
|
aggregated_success_patterns = {
|
|
'pattern_categories': {},
|
|
'success_factors': {},
|
|
'correlation_patterns': {},
|
|
'predictive_patterns': {}
|
|
}
|
|
|
|
# Aggregate by pattern categories
|
|
for participant_pattern in participant_patterns:
|
|
for category, patterns in participant_pattern.get('pattern_categories', {}).items():
|
|
if category not in aggregated_success_patterns['pattern_categories']:
|
|
aggregated_success_patterns['pattern_categories'][category] = []
|
|
|
|
aggregated_success_patterns['pattern_categories'][category].extend(patterns)
|
|
|
|
# Identify common success factors
|
|
success_factors = await self.identify_common_success_factors(participant_patterns)
|
|
aggregated_success_patterns['success_factors'] = success_factors
|
|
|
|
# Analyze correlation patterns
|
|
correlation_patterns = await self.analyze_cross_participant_correlations(
|
|
participant_patterns
|
|
)
|
|
aggregated_success_patterns['correlation_patterns'] = correlation_patterns
|
|
|
|
# Generate predictive patterns
|
|
predictive_patterns = await self.generate_predictive_success_patterns(
|
|
aggregated_success_patterns,
|
|
participant_patterns
|
|
)
|
|
aggregated_success_patterns['predictive_patterns'] = predictive_patterns
|
|
|
|
return aggregated_success_patterns
|
|
|
|
async def identify_common_success_factors(self, participant_patterns):
|
|
"""
|
|
Identify success factors that appear across multiple participants
|
|
"""
|
|
success_factor_counts = {}
|
|
total_participants = len(participant_patterns)
|
|
|
|
# Count occurrences of success factors
|
|
for participant_pattern in participant_patterns:
|
|
success_factors = participant_pattern.get('success_factors', {})
|
|
for factor, importance in success_factors.items():
|
|
if factor not in success_factor_counts:
|
|
success_factor_counts[factor] = {
|
|
'count': 0,
|
|
'total_importance': 0,
|
|
'participants': []
|
|
}
|
|
|
|
success_factor_counts[factor]['count'] += 1
|
|
success_factor_counts[factor]['total_importance'] += importance
|
|
success_factor_counts[factor]['participants'].append(
|
|
participant_pattern.get('participant_id')
|
|
)
|
|
|
|
# Calculate consensus and importance scores
|
|
common_success_factors = {}
|
|
for factor, data in success_factor_counts.items():
|
|
consensus_score = data['count'] / total_participants
|
|
average_importance = data['total_importance'] / data['count']
|
|
|
|
# Only include factors with significant consensus
|
|
if consensus_score >= 0.3: # At least 30% of participants
|
|
common_success_factors[factor] = {
|
|
'consensus_score': consensus_score,
|
|
'average_importance': average_importance,
|
|
'participant_count': data['count'],
|
|
'total_participants': total_participants
|
|
}
|
|
|
|
return common_success_factors
|
|
|
|
class PrivacyBudgetTracker:
|
|
"""
|
|
Track and manage differential privacy budget across learning operations
|
|
"""
|
|
|
|
def __init__(self, total_epsilon, total_delta):
|
|
self.total_epsilon = total_epsilon
|
|
self.total_delta = total_delta
|
|
self.used_epsilon = 0.0
|
|
self.used_delta = 0.0
|
|
self.budget_allocations = {}
|
|
self.operation_history = []
|
|
|
|
async def allocate_budget(self, operation_id, requested_epsilon, requested_delta):
|
|
"""
|
|
Allocate privacy budget for a specific operation
|
|
"""
|
|
remaining_epsilon = self.total_epsilon - self.used_epsilon
|
|
remaining_delta = self.total_delta - self.used_delta
|
|
|
|
if requested_epsilon > remaining_epsilon or requested_delta > remaining_delta:
|
|
return {
|
|
'allocation_successful': False,
|
|
'reason': 'insufficient_budget',
|
|
'remaining_epsilon': remaining_epsilon,
|
|
'remaining_delta': remaining_delta,
|
|
'requested_epsilon': requested_epsilon,
|
|
'requested_delta': requested_delta
|
|
}
|
|
|
|
# Allocate budget
|
|
self.budget_allocations[operation_id] = {
|
|
'epsilon': requested_epsilon,
|
|
'delta': requested_delta,
|
|
'timestamp': datetime.utcnow(),
|
|
'status': 'allocated'
|
|
}
|
|
|
|
return {
|
|
'allocation_successful': True,
|
|
'operation_id': operation_id,
|
|
'allocated_epsilon': requested_epsilon,
|
|
'allocated_delta': requested_delta,
|
|
'remaining_epsilon': remaining_epsilon - requested_epsilon,
|
|
'remaining_delta': remaining_delta - requested_delta
|
|
}
|
|
|
|
async def consume_budget(self, operation_id, actual_epsilon, actual_delta):
|
|
"""
|
|
Consume allocated privacy budget after operation completion
|
|
"""
|
|
if operation_id not in self.budget_allocations:
|
|
raise ValueError(f"No budget allocation found for operation {operation_id}")
|
|
|
|
allocation = self.budget_allocations[operation_id]
|
|
|
|
if actual_epsilon > allocation['epsilon'] or actual_delta > allocation['delta']:
|
|
raise ValueError("Actual consumption exceeds allocated budget")
|
|
|
|
# Update used budget
|
|
self.used_epsilon += actual_epsilon
|
|
self.used_delta += actual_delta
|
|
|
|
# Record operation
|
|
self.operation_history.append({
|
|
'operation_id': operation_id,
|
|
'epsilon_consumed': actual_epsilon,
|
|
'delta_consumed': actual_delta,
|
|
'timestamp': datetime.utcnow()
|
|
})
|
|
|
|
# Update allocation status
|
|
allocation['status'] = 'consumed'
|
|
allocation['actual_epsilon'] = actual_epsilon
|
|
allocation['actual_delta'] = actual_delta
|
|
|
|
return {
|
|
'consumption_successful': True,
|
|
'remaining_epsilon': self.total_epsilon - self.used_epsilon,
|
|
'remaining_delta': self.total_delta - self.used_delta
|
|
}
|
|
```
|
|
|
|
#### Cross-Organization Learning Network
|
|
```python
|
|
class CrossOrganizationLearningNetwork:
|
|
"""
|
|
Facilitate learning across organizational boundaries with trust and privacy controls
|
|
"""
|
|
|
|
def __init__(self):
|
|
self.trust_network = TrustNetwork()
|
|
self.reputation_system = ReputationSystem()
|
|
self.governance_framework = GovernanceFramework()
|
|
self.incentive_mechanism = IncentiveMechanism()
|
|
|
|
async def establish_learning_consortium(self, organizations, consortium_config):
|
|
"""
|
|
Establish a learning consortium across organizations
|
|
"""
|
|
consortium = {
|
|
'consortium_id': generate_uuid(),
|
|
'organizations': {},
|
|
'governance_rules': {},
|
|
'learning_agreements': {},
|
|
'trust_relationships': {},
|
|
'incentive_structure': {}
|
|
}
|
|
|
|
# Validate and register organizations
|
|
for org_id, org_config in organizations.items():
|
|
org_validation = await self.validate_organization(org_id, org_config)
|
|
if org_validation['is_valid']:
|
|
consortium['organizations'][org_id] = org_validation
|
|
|
|
# Establish governance rules
|
|
governance_rules = await self.establish_governance_rules(
|
|
consortium['organizations'],
|
|
consortium_config
|
|
)
|
|
consortium['governance_rules'] = governance_rules
|
|
|
|
# Create learning agreements
|
|
learning_agreements = await self.create_learning_agreements(
|
|
consortium['organizations'],
|
|
consortium_config
|
|
)
|
|
consortium['learning_agreements'] = learning_agreements
|
|
|
|
# Build trust relationships
|
|
trust_relationships = await self.build_trust_relationships(
|
|
consortium['organizations']
|
|
)
|
|
consortium['trust_relationships'] = trust_relationships
|
|
|
|
# Design incentive structure
|
|
incentive_structure = await self.design_incentive_structure(
|
|
consortium['organizations'],
|
|
consortium_config
|
|
)
|
|
consortium['incentive_structure'] = incentive_structure
|
|
|
|
return consortium
|
|
|
|
async def execute_consortium_learning(self, consortium, learning_objectives):
|
|
"""
|
|
Execute federated learning across consortium organizations
|
|
"""
|
|
learning_session = {
|
|
'session_id': generate_uuid(),
|
|
'consortium_id': consortium['consortium_id'],
|
|
'objectives': learning_objectives,
|
|
'participants': {},
|
|
'learning_outcomes': {},
|
|
'trust_metrics': {},
|
|
'incentive_distributions': {}
|
|
}
|
|
|
|
# Prepare participants for learning
|
|
for org_id in consortium['organizations']:
|
|
participant_prep = await self.prepare_organization_for_learning(
|
|
org_id,
|
|
learning_objectives,
|
|
consortium['governance_rules']
|
|
)
|
|
learning_session['participants'][org_id] = participant_prep
|
|
|
|
# Execute federated learning with privacy preservation
|
|
learning_engine = FederatedLearningEngine(
|
|
privacy_config=consortium['governance_rules']['privacy_config']
|
|
)
|
|
|
|
learning_results = await learning_engine.federated_pattern_learning({
|
|
'learning_type': learning_objectives['type'],
|
|
'privacy_requirements': consortium['governance_rules']['privacy_requirements'],
|
|
'consensus_threshold': consortium['governance_rules']['consensus_threshold'],
|
|
'participants': learning_session['participants']
|
|
})
|
|
|
|
learning_session['learning_outcomes'] = learning_results
|
|
|
|
# Update trust metrics
|
|
trust_metrics = await self.update_trust_metrics(
|
|
consortium,
|
|
learning_results
|
|
)
|
|
learning_session['trust_metrics'] = trust_metrics
|
|
|
|
# Distribute incentives
|
|
incentive_distributions = await self.distribute_incentives(
|
|
consortium,
|
|
learning_results,
|
|
learning_session['participants']
|
|
)
|
|
learning_session['incentive_distributions'] = incentive_distributions
|
|
|
|
return learning_session
|
|
```
|
|
|
|
### Cross-Project Learning Commands
|
|
|
|
```bash
|
|
# Federation setup and management
|
|
bmad federation create --participants "org1,org2,org3" --privacy-level "high"
|
|
bmad federation join --consortium-id "uuid" --organization "my-org"
|
|
bmad federation status --show-participants --trust-levels
|
|
|
|
# Privacy-preserving learning
|
|
bmad learn patterns --cross-project --privacy-budget "epsilon=1.0,delta=1e-5"
|
|
bmad learn success-factors --anonymous --min-participants 5
|
|
bmad learn anti-patterns --federated --consensus-threshold 0.7
|
|
|
|
# Trust and reputation management
|
|
bmad trust analyze --organization "org-id" --reputation-metrics
|
|
bmad reputation update --participant "org-id" --contribution-quality 0.9
|
|
bmad governance review --consortium-rules --compliance-check
|
|
|
|
# Learning outcomes and insights
|
|
bmad insights patterns --global --confidence-threshold 0.8
|
|
bmad insights trends --technology-adoption --time-window "1-year"
|
|
bmad insights export --learning-outcomes --privacy-preserved
|
|
```
|
|
|
|
This Federated Learning Engine enables secure, privacy-preserving learning across projects and organizations while extracting valuable insights that benefit the entire development community. The system maintains strong privacy guarantees while enabling collaborative learning at scale. |