831 lines
35 KiB
Markdown
831 lines
35 KiB
Markdown
# Autonomous Development Engine
|
|
|
|
## Intelligent Autonomous Development for Enhanced BMAD System
|
|
|
|
The Autonomous Development Engine enables the BMAD system to independently complete complex development tasks, from requirements analysis to implementation, testing, and deployment, while learning and improving its capabilities over time.
|
|
|
|
### Autonomous Development Architecture
|
|
|
|
#### Self-Directed Development Framework
|
|
```yaml
|
|
autonomous_development_architecture:
|
|
autonomy_levels:
|
|
guided_autonomy:
|
|
- task_decomposition: "Break complex tasks into manageable subtasks"
|
|
- context_understanding: "Deep understanding of project context and goals"
|
|
- decision_making: "Make informed decisions based on patterns and knowledge"
|
|
- progress_tracking: "Monitor progress and adjust approach as needed"
|
|
|
|
collaborative_autonomy:
|
|
- human_ai_collaboration: "Seamless collaboration between human and AI"
|
|
- clarification_seeking: "Ask for clarification when ambiguous"
|
|
- expertise_consultation: "Consult specialized knowledge when needed"
|
|
- review_integration: "Incorporate human feedback and reviews"
|
|
|
|
supervised_autonomy:
|
|
- autonomous_execution: "Execute tasks independently with oversight"
|
|
- quality_validation: "Self-validate work quality before submission"
|
|
- error_detection: "Detect and correct errors autonomously"
|
|
- performance_optimization: "Optimize approach based on results"
|
|
|
|
full_autonomy:
|
|
- end_to_end_delivery: "Complete entire features or modules independently"
|
|
- architectural_decisions: "Make architectural and design decisions"
|
|
- cross_system_integration: "Integrate across multiple systems and services"
|
|
- innovation_application: "Apply innovative solutions and patterns"
|
|
|
|
autonomous_capabilities:
|
|
requirement_analysis:
|
|
- stakeholder_intent_understanding: "Understand true stakeholder needs"
|
|
- requirement_refinement: "Refine and clarify ambiguous requirements"
|
|
- constraint_identification: "Identify technical and business constraints"
|
|
- acceptance_criteria_generation: "Generate comprehensive acceptance criteria"
|
|
|
|
architecture_design:
|
|
- system_architecture_design: "Design scalable system architectures"
|
|
- pattern_application: "Apply appropriate architectural patterns"
|
|
- technology_selection: "Select optimal technologies for requirements"
|
|
- integration_strategy: "Design integration strategies across systems"
|
|
|
|
implementation_execution:
|
|
- code_generation: "Generate high-quality, maintainable code"
|
|
- algorithm_implementation: "Implement complex algorithms efficiently"
|
|
- api_development: "Design and implement robust APIs"
|
|
- database_design: "Design optimal database schemas and queries"
|
|
|
|
testing_automation:
|
|
- test_strategy_design: "Design comprehensive testing strategies"
|
|
- test_case_generation: "Generate thorough test cases automatically"
|
|
- test_automation: "Implement automated testing frameworks"
|
|
- quality_assurance: "Ensure code quality through automated checks"
|
|
|
|
deployment_orchestration:
|
|
- deployment_strategy: "Design deployment strategies and pipelines"
|
|
- infrastructure_provisioning: "Provision and configure infrastructure"
|
|
- monitoring_setup: "Set up monitoring and alerting systems"
|
|
- performance_optimization: "Optimize for performance and scalability"
|
|
|
|
learning_mechanisms:
|
|
outcome_based_learning:
|
|
- success_pattern_extraction: "Learn from successful implementations"
|
|
- failure_analysis: "Analyze and learn from failures"
|
|
- performance_correlation: "Correlate approaches with performance outcomes"
|
|
- quality_feedback_integration: "Learn from quality feedback and reviews"
|
|
|
|
adaptive_improvement:
|
|
- approach_refinement: "Refine approaches based on experience"
|
|
- efficiency_optimization: "Optimize for development efficiency"
|
|
- quality_enhancement: "Continuously improve code quality"
|
|
- innovation_integration: "Integrate new techniques and patterns"
|
|
|
|
meta_learning:
|
|
- learning_strategy_optimization: "Optimize how the system learns"
|
|
- knowledge_transfer: "Transfer knowledge across domains and projects"
|
|
- expertise_development: "Develop specialized expertise areas"
|
|
- capability_expansion: "Expand capabilities through experience"
|
|
```
|
|
|
|
#### Autonomous Development Engine Implementation
|
|
```python
|
|
import asyncio
|
|
import networkx as nx
|
|
from typing import Dict, List, Any, Optional, Tuple, Union
|
|
from dataclasses import dataclass, field
|
|
from enum import Enum
|
|
import json
|
|
from datetime import datetime, timedelta
|
|
import numpy as np
|
|
from sklearn.ensemble import RandomForestClassifier
|
|
from sklearn.metrics import accuracy_score
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
class AutonomyLevel(Enum):
|
|
GUIDED = "guided"
|
|
COLLABORATIVE = "collaborative"
|
|
SUPERVISED = "supervised"
|
|
FULL = "full"
|
|
|
|
class TaskComplexity(Enum):
|
|
SIMPLE = "simple"
|
|
MODERATE = "moderate"
|
|
COMPLEX = "complex"
|
|
EXPERT = "expert"
|
|
|
|
@dataclass
|
|
class DevelopmentTask:
|
|
"""
|
|
Represents a development task for autonomous execution
|
|
"""
|
|
id: str
|
|
title: str
|
|
description: str
|
|
requirements: List[str] = field(default_factory=list)
|
|
constraints: List[str] = field(default_factory=list)
|
|
acceptance_criteria: List[str] = field(default_factory=list)
|
|
complexity: TaskComplexity = TaskComplexity.MODERATE
|
|
estimated_effort: Optional[float] = None
|
|
dependencies: List[str] = field(default_factory=list)
|
|
context: Dict[str, Any] = field(default_factory=dict)
|
|
|
|
@dataclass
|
|
class AutonomousExecutionPlan:
|
|
"""
|
|
Represents an execution plan for autonomous development
|
|
"""
|
|
task_id: str
|
|
autonomy_level: AutonomyLevel
|
|
execution_steps: List[Dict[str, Any]] = field(default_factory=list)
|
|
resource_requirements: Dict[str, Any] = field(default_factory=dict)
|
|
quality_checkpoints: List[Dict[str, Any]] = field(default_factory=list)
|
|
fallback_strategies: List[Dict[str, Any]] = field(default_factory=list)
|
|
success_criteria: Dict[str, Any] = field(default_factory=dict)
|
|
|
|
class AutonomousDevelopmentEngine:
|
|
"""
|
|
Advanced autonomous development engine for independent task execution
|
|
"""
|
|
|
|
def __init__(self, claude_code_interface, config=None):
|
|
self.claude_code = claude_code_interface
|
|
self.config = config or {
|
|
'default_autonomy_level': AutonomyLevel.COLLABORATIVE,
|
|
'max_execution_time': 3600, # 1 hour
|
|
'quality_threshold': 0.85,
|
|
'learning_rate': 0.01,
|
|
'confidence_threshold': 0.8
|
|
}
|
|
|
|
# Core autonomous capabilities
|
|
self.task_analyzer = AutonomousTaskAnalyzer(self.config)
|
|
self.execution_planner = AutonomousExecutionPlanner(self.config)
|
|
self.code_generator = AutonomousCodeGenerator(self.claude_code, self.config)
|
|
self.quality_assessor = AutonomousQualityAssessor(self.config)
|
|
self.learning_engine = AutonomousLearningEngine(self.config)
|
|
|
|
# Specialized autonomous modules
|
|
self.requirement_analyzer = AutonomousRequirementAnalyzer(self.config)
|
|
self.architecture_designer = AutonomousArchitectureDesigner(self.config)
|
|
self.test_generator = AutonomousTestGenerator(self.claude_code, self.config)
|
|
self.deployment_orchestrator = AutonomousDeploymentOrchestrator(self.config)
|
|
|
|
# Autonomous decision making
|
|
self.decision_engine = AutonomousDecisionEngine(self.config)
|
|
self.context_manager = AutonomousContextManager(self.config)
|
|
|
|
# Performance tracking
|
|
self.execution_history = []
|
|
self.performance_metrics = AutonomousPerformanceTracker()
|
|
|
|
async def execute_autonomous_development(self, task, execution_context=None):
|
|
"""
|
|
Execute autonomous development task with full intelligence
|
|
"""
|
|
execution_session = {
|
|
'session_id': generate_uuid(),
|
|
'task': task,
|
|
'start_time': datetime.utcnow(),
|
|
'execution_context': execution_context or {},
|
|
'autonomy_decisions': [],
|
|
'execution_steps': [],
|
|
'quality_assessments': [],
|
|
'learning_outcomes': {},
|
|
'final_deliverables': {}
|
|
}
|
|
|
|
try:
|
|
# Phase 1: Deep Task Analysis
|
|
task_analysis = await self.task_analyzer.analyze_task_comprehensively(
|
|
task,
|
|
execution_context
|
|
)
|
|
execution_session['task_analysis'] = task_analysis
|
|
|
|
# Phase 2: Determine Optimal Autonomy Level
|
|
autonomy_decision = await self.determine_optimal_autonomy_level(
|
|
task,
|
|
task_analysis,
|
|
execution_context
|
|
)
|
|
execution_session['autonomy_level'] = autonomy_decision['level']
|
|
execution_session['autonomy_decisions'].append(autonomy_decision)
|
|
|
|
# Phase 3: Create Autonomous Execution Plan
|
|
execution_plan = await self.execution_planner.create_autonomous_plan(
|
|
task,
|
|
task_analysis,
|
|
autonomy_decision['level'],
|
|
execution_context
|
|
)
|
|
execution_session['execution_plan'] = execution_plan
|
|
|
|
# Phase 4: Execute Plan with Autonomous Intelligence
|
|
execution_result = await self.execute_autonomous_plan(
|
|
execution_plan,
|
|
execution_session
|
|
)
|
|
execution_session.update(execution_result)
|
|
|
|
# Phase 5: Autonomous Quality Validation
|
|
quality_validation = await self.quality_assessor.validate_autonomous_output(
|
|
execution_session,
|
|
task.acceptance_criteria
|
|
)
|
|
execution_session['quality_validation'] = quality_validation
|
|
|
|
# Phase 6: Learn from Execution
|
|
learning_outcomes = await self.learning_engine.learn_from_execution(
|
|
execution_session
|
|
)
|
|
execution_session['learning_outcomes'] = learning_outcomes
|
|
|
|
execution_session['status'] = 'completed'
|
|
execution_session['success'] = quality_validation.get('passed', False)
|
|
|
|
except Exception as e:
|
|
execution_session['status'] = 'failed'
|
|
execution_session['error'] = str(e)
|
|
execution_session['success'] = False
|
|
|
|
# Learn from failure
|
|
failure_learning = await self.learning_engine.learn_from_failure(
|
|
execution_session,
|
|
str(e)
|
|
)
|
|
execution_session['failure_learning'] = failure_learning
|
|
|
|
finally:
|
|
execution_session['end_time'] = datetime.utcnow()
|
|
execution_session['total_duration'] = (
|
|
execution_session['end_time'] - execution_session['start_time']
|
|
).total_seconds()
|
|
|
|
# Store execution history
|
|
self.execution_history.append(execution_session)
|
|
|
|
# Update performance metrics
|
|
await self.performance_metrics.update_from_execution(execution_session)
|
|
|
|
return execution_session
|
|
|
|
async def determine_optimal_autonomy_level(self, task, task_analysis, context):
|
|
"""
|
|
Determine the optimal autonomy level for task execution
|
|
"""
|
|
autonomy_factors = {
|
|
'task_complexity': task_analysis.get('complexity_score', 0.5),
|
|
'context_clarity': task_analysis.get('clarity_score', 0.5),
|
|
'domain_expertise': await self.assess_domain_expertise(task, context),
|
|
'risk_level': task_analysis.get('risk_score', 0.5),
|
|
'precedent_availability': await self.assess_precedent_availability(task),
|
|
'stakeholder_preference': context.get('autonomy_preference', 0.5)
|
|
}
|
|
|
|
# Calculate autonomy score
|
|
weights = {
|
|
'task_complexity': -0.3, # Higher complexity reduces autonomy
|
|
'context_clarity': 0.25, # Higher clarity increases autonomy
|
|
'domain_expertise': 0.3, # Higher expertise increases autonomy
|
|
'risk_level': -0.25, # Higher risk reduces autonomy
|
|
'precedent_availability': 0.15, # More precedents increase autonomy
|
|
'stakeholder_preference': 0.05 # Stakeholder preference influence
|
|
}
|
|
|
|
autonomy_score = sum(
|
|
autonomy_factors[factor] * weights[factor]
|
|
for factor in autonomy_factors
|
|
)
|
|
|
|
# Normalize to 0-1 range
|
|
autonomy_score = max(0, min(1, autonomy_score + 0.5))
|
|
|
|
# Determine autonomy level
|
|
if autonomy_score >= 0.8:
|
|
autonomy_level = AutonomyLevel.FULL
|
|
elif autonomy_score >= 0.6:
|
|
autonomy_level = AutonomyLevel.SUPERVISED
|
|
elif autonomy_score >= 0.4:
|
|
autonomy_level = AutonomyLevel.COLLABORATIVE
|
|
else:
|
|
autonomy_level = AutonomyLevel.GUIDED
|
|
|
|
return {
|
|
'level': autonomy_level,
|
|
'score': autonomy_score,
|
|
'factors': autonomy_factors,
|
|
'reasoning': self.generate_autonomy_reasoning(autonomy_factors, autonomy_level)
|
|
}
|
|
|
|
async def execute_autonomous_plan(self, execution_plan, execution_session):
|
|
"""
|
|
Execute autonomous plan with intelligent adaptation
|
|
"""
|
|
plan_execution = {
|
|
'steps_completed': [],
|
|
'adaptations_made': [],
|
|
'quality_checks': [],
|
|
'deliverables': {},
|
|
'intermediate_outputs': {}
|
|
}
|
|
|
|
current_context = execution_session['execution_context'].copy()
|
|
|
|
for step_index, step in enumerate(execution_plan.execution_steps):
|
|
step_start_time = datetime.utcnow()
|
|
|
|
try:
|
|
# Execute step with autonomous intelligence
|
|
step_result = await self.execute_autonomous_step(
|
|
step,
|
|
current_context,
|
|
execution_plan,
|
|
execution_session
|
|
)
|
|
|
|
# Validate step quality
|
|
step_quality = await self.quality_assessor.assess_step_quality(
|
|
step,
|
|
step_result,
|
|
execution_plan.quality_checkpoints
|
|
)
|
|
|
|
# Adapt if necessary
|
|
if step_quality.get('requires_adaptation', False):
|
|
adaptation = await self.adapt_execution_step(
|
|
step,
|
|
step_result,
|
|
step_quality,
|
|
current_context
|
|
)
|
|
plan_execution['adaptations_made'].append(adaptation)
|
|
|
|
# Re-execute with adaptation
|
|
step_result = await self.execute_autonomous_step(
|
|
adaptation['adapted_step'],
|
|
current_context,
|
|
execution_plan,
|
|
execution_session
|
|
)
|
|
|
|
# Store step completion
|
|
plan_execution['steps_completed'].append({
|
|
'step_index': step_index,
|
|
'step_id': step.get('id'),
|
|
'result': step_result,
|
|
'quality': step_quality,
|
|
'duration': (datetime.utcnow() - step_start_time).total_seconds()
|
|
})
|
|
|
|
# Update context with step outputs
|
|
current_context.update(step_result.get('outputs', {}))
|
|
|
|
# Store intermediate outputs
|
|
if step_result.get('deliverable'):
|
|
plan_execution['intermediate_outputs'][step.get('id')] = step_result['deliverable']
|
|
|
|
except Exception as e:
|
|
# Handle step failure with autonomous recovery
|
|
recovery_result = await self.autonomous_error_recovery(
|
|
step,
|
|
str(e),
|
|
current_context,
|
|
execution_plan
|
|
)
|
|
|
|
if recovery_result.get('recovered', False):
|
|
plan_execution['steps_completed'].append({
|
|
'step_index': step_index,
|
|
'step_id': step.get('id'),
|
|
'result': recovery_result,
|
|
'recovered_from_error': True,
|
|
'original_error': str(e),
|
|
'duration': (datetime.utcnow() - step_start_time).total_seconds()
|
|
})
|
|
else:
|
|
# Cannot recover, escalate
|
|
raise Exception(f"Step {step.get('id')} failed and recovery unsuccessful: {e}")
|
|
|
|
# Generate final deliverables
|
|
final_deliverables = await self.generate_final_deliverables(
|
|
plan_execution,
|
|
execution_plan,
|
|
current_context
|
|
)
|
|
plan_execution['deliverables'] = final_deliverables
|
|
|
|
return plan_execution
|
|
|
|
async def execute_autonomous_step(self, step, context, execution_plan, execution_session):
|
|
"""
|
|
Execute a single autonomous step with full intelligence
|
|
"""
|
|
step_execution = {
|
|
'step_id': step.get('id'),
|
|
'step_type': step.get('type'),
|
|
'start_time': datetime.utcnow(),
|
|
'outputs': {},
|
|
'artifacts_created': [],
|
|
'decisions_made': [],
|
|
'tools_used': []
|
|
}
|
|
|
|
step_type = step.get('type')
|
|
|
|
if step_type == 'requirement_analysis':
|
|
result = await self.requirement_analyzer.analyze_requirements_autonomously(
|
|
step, context, execution_session
|
|
)
|
|
elif step_type == 'architecture_design':
|
|
result = await self.architecture_designer.design_architecture_autonomously(
|
|
step, context, execution_session
|
|
)
|
|
elif step_type == 'code_generation':
|
|
result = await self.code_generator.generate_code_autonomously(
|
|
step, context, execution_session
|
|
)
|
|
elif step_type == 'test_generation':
|
|
result = await self.test_generator.generate_tests_autonomously(
|
|
step, context, execution_session
|
|
)
|
|
elif step_type == 'deployment_setup':
|
|
result = await self.deployment_orchestrator.setup_deployment_autonomously(
|
|
step, context, execution_session
|
|
)
|
|
elif step_type == 'integration':
|
|
result = await self.execute_integration_step(
|
|
step, context, execution_session
|
|
)
|
|
elif step_type == 'optimization':
|
|
result = await self.execute_optimization_step(
|
|
step, context, execution_session
|
|
)
|
|
else:
|
|
result = await self.execute_generic_autonomous_step(
|
|
step, context, execution_session
|
|
)
|
|
|
|
step_execution.update(result)
|
|
step_execution['end_time'] = datetime.utcnow()
|
|
step_execution['duration'] = (
|
|
step_execution['end_time'] - step_execution['start_time']
|
|
).total_seconds()
|
|
|
|
return step_execution
|
|
|
|
class AutonomousTaskAnalyzer:
|
|
"""
|
|
Analyzes tasks to understand requirements, complexity, and optimal approach
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.complexity_analyzer = TaskComplexityAnalyzer()
|
|
self.requirement_extractor = RequirementExtractor()
|
|
self.context_analyzer = TaskContextAnalyzer()
|
|
|
|
async def analyze_task_comprehensively(self, task, context):
|
|
"""
|
|
Perform comprehensive analysis of development task
|
|
"""
|
|
task_analysis = {
|
|
'complexity_analysis': {},
|
|
'requirement_analysis': {},
|
|
'context_analysis': {},
|
|
'risk_analysis': {},
|
|
'feasibility_analysis': {},
|
|
'approach_recommendations': []
|
|
}
|
|
|
|
# Analyze task complexity
|
|
complexity_analysis = await self.complexity_analyzer.analyze_complexity(task, context)
|
|
task_analysis['complexity_analysis'] = complexity_analysis
|
|
|
|
# Extract and analyze requirements
|
|
requirement_analysis = await self.requirement_extractor.extract_requirements(
|
|
task, context
|
|
)
|
|
task_analysis['requirement_analysis'] = requirement_analysis
|
|
|
|
# Analyze context factors
|
|
context_analysis = await self.context_analyzer.analyze_context(task, context)
|
|
task_analysis['context_analysis'] = context_analysis
|
|
|
|
# Assess risks
|
|
risk_analysis = await self.assess_task_risks(task, complexity_analysis, context)
|
|
task_analysis['risk_analysis'] = risk_analysis
|
|
|
|
# Assess feasibility
|
|
feasibility_analysis = await self.assess_task_feasibility(
|
|
task, complexity_analysis, context
|
|
)
|
|
task_analysis['feasibility_analysis'] = feasibility_analysis
|
|
|
|
# Generate approach recommendations
|
|
approach_recommendations = await self.generate_approach_recommendations(
|
|
task_analysis
|
|
)
|
|
task_analysis['approach_recommendations'] = approach_recommendations
|
|
|
|
# Calculate overall scores
|
|
task_analysis['complexity_score'] = complexity_analysis.get('overall_score', 0.5)
|
|
task_analysis['clarity_score'] = requirement_analysis.get('clarity_score', 0.5)
|
|
task_analysis['risk_score'] = risk_analysis.get('overall_risk', 0.5)
|
|
task_analysis['feasibility_score'] = feasibility_analysis.get('feasibility_score', 0.5)
|
|
|
|
return task_analysis
|
|
|
|
async def assess_task_risks(self, task, complexity_analysis, context):
|
|
"""
|
|
Assess risks associated with autonomous task execution
|
|
"""
|
|
risk_factors = {
|
|
'technical_risks': [],
|
|
'timeline_risks': [],
|
|
'quality_risks': [],
|
|
'integration_risks': [],
|
|
'dependency_risks': []
|
|
}
|
|
|
|
# Assess technical risks
|
|
if complexity_analysis.get('technical_complexity', 0) > 0.7:
|
|
risk_factors['technical_risks'].append({
|
|
'risk': 'high_technical_complexity',
|
|
'probability': 0.7,
|
|
'impact': 'high',
|
|
'mitigation': 'Break into smaller, well-defined subtasks'
|
|
})
|
|
|
|
# Assess timeline risks
|
|
estimated_effort = task.estimated_effort or 1.0
|
|
if estimated_effort > 4.0: # More than 4 hours
|
|
risk_factors['timeline_risks'].append({
|
|
'risk': 'extended_development_time',
|
|
'probability': 0.6,
|
|
'impact': 'medium',
|
|
'mitigation': 'Implement incremental delivery with checkpoints'
|
|
})
|
|
|
|
# Assess quality risks
|
|
if not task.acceptance_criteria or len(task.acceptance_criteria) < 3:
|
|
risk_factors['quality_risks'].append({
|
|
'risk': 'unclear_acceptance_criteria',
|
|
'probability': 0.8,
|
|
'impact': 'high',
|
|
'mitigation': 'Generate detailed acceptance criteria autonomously'
|
|
})
|
|
|
|
# Calculate overall risk score
|
|
all_risks = []
|
|
for risk_category in risk_factors.values():
|
|
all_risks.extend(risk_category)
|
|
|
|
if all_risks:
|
|
risk_scores = [risk['probability'] for risk in all_risks]
|
|
overall_risk = np.mean(risk_scores)
|
|
else:
|
|
overall_risk = 0.2 # Low default risk
|
|
|
|
return {
|
|
'risk_factors': risk_factors,
|
|
'overall_risk': overall_risk,
|
|
'high_risk_areas': [
|
|
category for category, risks in risk_factors.items()
|
|
if any(risk['probability'] > 0.7 for risk in risks)
|
|
]
|
|
}
|
|
|
|
class AutonomousCodeGenerator:
|
|
"""
|
|
Generates high-quality code autonomously using advanced techniques
|
|
"""
|
|
|
|
def __init__(self, claude_code, config):
|
|
self.claude_code = claude_code
|
|
self.config = config
|
|
self.pattern_library = CodePatternLibrary()
|
|
self.quality_templates = CodeQualityTemplates()
|
|
|
|
async def generate_code_autonomously(self, step, context, execution_session):
|
|
"""
|
|
Generate code autonomously with quality assurance
|
|
"""
|
|
code_generation = {
|
|
'generated_files': {},
|
|
'code_analysis': {},
|
|
'quality_metrics': {},
|
|
'optimizations_applied': [],
|
|
'patterns_used': []
|
|
}
|
|
|
|
# Analyze code generation requirements
|
|
generation_requirements = await self.analyze_generation_requirements(
|
|
step, context
|
|
)
|
|
|
|
# Select optimal patterns and templates
|
|
selected_patterns = await self.pattern_library.select_optimal_patterns(
|
|
generation_requirements
|
|
)
|
|
code_generation['patterns_used'] = selected_patterns
|
|
|
|
# Generate code using advanced techniques
|
|
for component in generation_requirements['components']:
|
|
generated_code = await self.generate_component_code(
|
|
component,
|
|
selected_patterns,
|
|
context
|
|
)
|
|
|
|
# Apply quality optimizations
|
|
optimized_code = await self.apply_quality_optimizations(
|
|
generated_code,
|
|
component,
|
|
context
|
|
)
|
|
|
|
# Validate code quality
|
|
quality_metrics = await self.validate_code_quality(
|
|
optimized_code,
|
|
component
|
|
)
|
|
|
|
code_generation['generated_files'][component['name']] = optimized_code
|
|
code_generation['quality_metrics'][component['name']] = quality_metrics
|
|
|
|
# Create files using Claude Code
|
|
for file_name, code_content in code_generation['generated_files'].items():
|
|
await self.claude_code.write(
|
|
file_path=f"{context.get('output_path', 'src')}/{file_name}",
|
|
content=code_content
|
|
)
|
|
|
|
return code_generation
|
|
|
|
async def generate_component_code(self, component, patterns, context):
|
|
"""
|
|
Generate code for a specific component using selected patterns
|
|
"""
|
|
# Use Claude Code to generate high-quality code
|
|
generation_prompt = self.create_generation_prompt(component, patterns, context)
|
|
|
|
# Generate code using the universal LLM interface
|
|
generated_result = await self.claude_code.generate_code({
|
|
'prompt': generation_prompt,
|
|
'component_spec': component,
|
|
'patterns': patterns,
|
|
'context': context,
|
|
'quality_requirements': self.config.get('quality_requirements', {})
|
|
})
|
|
|
|
return generated_result.get('code', '')
|
|
|
|
def create_generation_prompt(self, component, patterns, context):
|
|
"""
|
|
Create intelligent prompt for code generation
|
|
"""
|
|
prompt = f"""
|
|
Generate high-quality {component['language']} code for: {component['name']}
|
|
|
|
Requirements:
|
|
{chr(10).join(f"- {req}" for req in component.get('requirements', []))}
|
|
|
|
Apply these patterns:
|
|
{chr(10).join(f"- {pattern['name']}: {pattern['description']}" for pattern in patterns)}
|
|
|
|
Context:
|
|
- Project: {context.get('project_name', 'Unknown')}
|
|
- Architecture: {context.get('architecture_style', 'Standard')}
|
|
- Performance Requirements: {context.get('performance_requirements', 'Standard')}
|
|
|
|
Quality Standards:
|
|
- Follow best practices and coding standards
|
|
- Include comprehensive error handling
|
|
- Add appropriate documentation and comments
|
|
- Ensure code is maintainable and testable
|
|
- Optimize for performance where appropriate
|
|
|
|
Generate complete, production-ready code.
|
|
"""
|
|
return prompt
|
|
|
|
class AutonomousLearningEngine:
|
|
"""
|
|
Enables autonomous learning and improvement from execution outcomes
|
|
"""
|
|
|
|
def __init__(self, config):
|
|
self.config = config
|
|
self.learning_model = AutonomousLearningModel()
|
|
self.experience_database = ExperienceDatabase()
|
|
self.improvement_generator = ImprovementGenerator()
|
|
|
|
async def learn_from_execution(self, execution_session):
|
|
"""
|
|
Learn from successful execution to improve future performance
|
|
"""
|
|
learning_outcomes = {
|
|
'patterns_learned': [],
|
|
'improvements_identified': [],
|
|
'success_factors': [],
|
|
'model_updates': {}
|
|
}
|
|
|
|
# Extract learning patterns from execution
|
|
execution_patterns = await self.extract_execution_patterns(execution_session)
|
|
learning_outcomes['patterns_learned'] = execution_patterns
|
|
|
|
# Identify improvement opportunities
|
|
improvements = await self.improvement_generator.identify_improvements(
|
|
execution_session
|
|
)
|
|
learning_outcomes['improvements_identified'] = improvements
|
|
|
|
# Analyze success factors
|
|
success_factors = await self.analyze_success_factors(execution_session)
|
|
learning_outcomes['success_factors'] = success_factors
|
|
|
|
# Update learning models
|
|
model_updates = await self.learning_model.update_from_experience(
|
|
execution_session
|
|
)
|
|
learning_outcomes['model_updates'] = model_updates
|
|
|
|
# Store experience in database
|
|
await self.experience_database.store_experience(
|
|
execution_session,
|
|
learning_outcomes
|
|
)
|
|
|
|
return learning_outcomes
|
|
|
|
async def learn_from_failure(self, execution_session, error):
|
|
"""
|
|
Learn from failed execution to prevent future failures
|
|
"""
|
|
failure_learning = {
|
|
'failure_patterns': [],
|
|
'prevention_strategies': [],
|
|
'fallback_improvements': [],
|
|
'model_corrections': {}
|
|
}
|
|
|
|
# Analyze failure patterns
|
|
failure_patterns = await self.analyze_failure_patterns(
|
|
execution_session,
|
|
error
|
|
)
|
|
failure_learning['failure_patterns'] = failure_patterns
|
|
|
|
# Generate prevention strategies
|
|
prevention_strategies = await self.generate_prevention_strategies(
|
|
execution_session,
|
|
failure_patterns
|
|
)
|
|
failure_learning['prevention_strategies'] = prevention_strategies
|
|
|
|
# Update learning models with failure information
|
|
model_corrections = await self.learning_model.correct_from_failure(
|
|
execution_session,
|
|
error
|
|
)
|
|
failure_learning['model_corrections'] = model_corrections
|
|
|
|
# Store failure experience
|
|
await self.experience_database.store_failure_experience(
|
|
execution_session,
|
|
error,
|
|
failure_learning
|
|
)
|
|
|
|
return failure_learning
|
|
```
|
|
|
|
### Autonomous Development Commands
|
|
|
|
```bash
|
|
# Autonomous task execution
|
|
bmad autonomous execute --task "implement-user-auth" --autonomy-level "supervised"
|
|
bmad autonomous plan --requirements "user-story.md" --generate-subtasks
|
|
bmad autonomous develop --feature "payment-integration" --end-to-end
|
|
|
|
# Autonomous learning and improvement
|
|
bmad autonomous learn --from-execution "session-id" --update-models
|
|
bmad autonomous improve --based-on-outcomes --optimize-approaches
|
|
bmad autonomous adapt --to-project-patterns --enhance-capabilities
|
|
|
|
# Autonomous quality and optimization
|
|
bmad autonomous validate --deliverables "all" --against-criteria
|
|
bmad autonomous optimize --code-quality --performance --maintainability
|
|
bmad autonomous test --generate-comprehensive --execute-automated
|
|
|
|
# Autonomous monitoring and analytics
|
|
bmad autonomous monitor --execution-progress --real-time
|
|
bmad autonomous analyze --performance-trends --success-patterns
|
|
bmad autonomous report --capabilities --improvements --recommendations
|
|
```
|
|
|
|
This Autonomous Development Engine transforms Claude Code into an intelligent development partner capable of independently completing complex tasks while continuously learning and improving its capabilities. The system can operate at multiple autonomy levels and adapt its approach based on context, requirements, and learned experience.
|
|
|
|
<function_calls>
|
|
<invoke name="TodoWrite">
|
|
<parameter name="todos">[{"content": "Phase 1: Core Intelligence Foundation - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase1"}, {"content": "Phase 2: LLM Integration and Knowledge Management - COMPLETED \u2705", "status": "completed", "priority": "high", "id": "phase2"}, {"content": "Phase 3: Advanced Intelligence and Claude Code Integration - IN PROGRESS", "status": "in_progress", "priority": "high", "id": "phase3"}, {"content": "Create Autonomous Development Engine", "status": "completed", "priority": "high", "id": "3.1"}, {"content": "Implement Advanced Code Intelligence", "status": "in_progress", "priority": "high", "id": "3.2"}, {"content": "Build Self-Improving AI Capabilities", "status": "pending", "priority": "high", "id": "3.3"}, {"content": "Develop Intelligent Automation Framework", "status": "pending", "priority": "high", "id": "3.4"}, {"content": "Create Quality Assurance Automation", "status": "pending", "priority": "high", "id": "3.5"}, {"content": "Implement Performance Optimization Engine", "status": "pending", "priority": "high", "id": "3.6"}, {"content": "Build Predictive Development Intelligence", "status": "pending", "priority": "high", "id": "3.7"}, {"content": "Phase 4: Self-Optimization and Enterprise Features", "status": "pending", "priority": "medium", "id": "phase4"}] |