# Memory-Enhanced Context Restoration Task ## Purpose Intelligently restore context using both session state and accumulated memory insights to provide comprehensive, actionable context for persona activation and task execution. ## Multi-Layer Context Restoration Process ### 1. Session State Analysis **Immediate Context Loading**: ```python def load_session_context(): session_state = load_file('.ai/orchestrator-state.md') return { "project_name": extract_project_name(session_state), "current_phase": extract_current_phase(session_state), "active_personas": extract_persona_history(session_state), "recent_decisions": extract_decision_log(session_state), "pending_items": extract_blockers_and_concerns(session_state), "last_activity": extract_last_activity(session_state), "session_duration": calculate_session_duration(session_state) } ``` ### 2. Memory Intelligence Integration **Historical Context Queries**: ```python def gather_memory_intelligence(session_context, target_persona): memory_queries = [] # Direct persona relevance memory_queries.append(f"{target_persona} successful patterns {session_context.project_type}") # Current phase insights memory_queries.append(f"{session_context.current_phase} challenges solutions {target_persona}") # Pending items resolution if session_context.pending_items: memory_queries.append(f"solutions for {session_context.pending_items}") # Cross-project learning memory_queries.append(f"successful {target_persona} approaches {session_context.tech_context}") # Anti-pattern prevention memory_queries.append(f"common mistakes {target_persona} {session_context.current_phase}") return execute_memory_queries(memory_queries) def execute_memory_queries(queries): memory_insights = { "relevant_patterns": [], "success_strategies": [], "anti_patterns": [], "optimization_opportunities": [], "personalization_insights": [] } for query in queries: memories = search_memory(query, limit=3, threshold=0.7) categorize_memories(memories, memory_insights) return memory_insights ``` ### 3. Proactive Intelligence Generation **Intelligent Anticipation**: ```python def generate_proactive_insights(session_context, memory_insights, target_persona): proactive_intelligence = {} # Predict likely next actions proactive_intelligence["likely_next_actions"] = predict_next_actions( session_context, memory_insights, target_persona ) # Identify potential roadblocks proactive_intelligence["potential_issues"] = identify_potential_issues( session_context, memory_insights ) # Suggest optimizations proactive_intelligence["optimization_opportunities"] = suggest_optimizations( session_context, memory_insights ) # Personalize recommendations proactive_intelligence["personalized_suggestions"] = personalize_recommendations( session_context, target_persona ) return proactive_intelligence ``` ## Context Presentation Templates ### Enhanced Context Briefing for Persona Activation ```markdown # 🧠 Memory-Enhanced Context Restoration for {Target Persona} ## 📍 Current Project State **Project**: {project_name} | **Phase**: {current_phase} | **Duration**: {session_duration} **Last Activity**: {last_persona} completed {last_task} {time_ago} **Progress Status**: {completion_percentage}% through {current_epic} ## 🎯 Your Role Context **Activation Reason**: {why_this_persona_now} **Expected Contribution**: {anticipated_value_from_persona} **Key Stakeholders**: {relevant_other_personas_and_user} ## 📚 Relevant Memory Intelligence ### Successful Patterns (from {similar_situations_count} similar cases) - ✅ **{Success Pattern 1}**: Applied in {project_example} with {success_metric} - ✅ **{Success Pattern 2}**: Used {usage_frequency} times with {average_outcome} - ✅ **{Success Pattern 3}**: Proven effective for {context_specifics} ### Lessons Learned - ⚠️ **Avoid**: {anti_pattern} (caused issues in {failure_count} cases) - 🔧 **Best Practice**: {optimization_approach} (improved outcomes by {improvement_metric}) - 💡 **Insight**: {strategic_insight} (discovered from {learning_source}) ## 🚀 Proactive Recommendations ### Immediate Actions 1. **{Priority Action 1}** - {rationale_with_memory_support} 2. **{Priority Action 2}** - {rationale_with_memory_support} ### Optimization Opportunities - **{Optimization 1}**: {memory_based_suggestion} - **{Optimization 2}**: {efficiency_improvement} ### Potential Issues to Watch - **{Risk 1}**: {early_warning_signs} → **Prevention**: {mitigation_strategy} - **{Risk 2}**: {indicators_to_monitor} → **Response**: {response_plan} ## 🎨 Personalization Insights **Your Working Style**: {learned_preferences} **Effective Approaches**: {what_works_well_for_user} **Communication Preferences**: {optimal_interaction_style} ## ❓ Contextual Questions for Validation Based on memory patterns, please confirm: 1. {context_validation_question_1} 2. {context_validation_question_2} 3. {preference_confirmation_question} --- 💬 **Memory Access**: Use `/recall {topic}` or ask "What do you remember about..." 🔍 **Deep Dive**: Use `/insights` for additional proactive intelligence ``` ### Lightweight Context Summary (for experienced users) ```markdown # ⚡ Quick Context for {Target Persona} **Current**: {project_phase} | **Last**: {previous_activity} **Memory Insights**: {key_pattern} proven in {success_cases} similar cases **Recommended**: {next_action} based on {success_probability}% success rate **Watch For**: {primary_risk} (early signs: {warning_indicators}) **Ready to proceed with {suggested_approach}?** ``` ## Context Restoration Intelligence ### Pattern Recognition Engine ```python def recognize_context_patterns(session_context, memory_base): pattern_analysis = { "workflow_stage": classify_workflow_stage(session_context), "success_probability": calculate_success_probability(session_context, memory_base), "risk_assessment": assess_contextual_risks(session_context, memory_base), "optimization_potential": identify_optimization_opportunities(session_context), "user_alignment": assess_user_preference_alignment(session_context) } return pattern_analysis def classify_workflow_stage(session_context): stage_indicators = { "project_initiation": ["no_prd", "analyst_activity", "brainstorming"], "requirements_definition": ["prd_draft", "pm_activity", "scope_discussion"], "architecture_design": ["architect_activity", "tech_decisions", "component_design"], "development_preparation": ["po_activity", "story_creation", "validation"], "active_development": ["dev_activity", "implementation", "testing"], "refinement_cycle": ["multiple_persona_switches", "iterative_changes"] } return match_stage_indicators(session_context, stage_indicators) ``` ### Success Prediction Algorithm ```python def calculate_success_probability(current_context, memory_insights): success_factors = { "pattern_match_strength": calculate_pattern_similarity(current_context, memory_insights), "context_completeness": assess_context_completeness(current_context), "resource_availability": evaluate_resource_readiness(current_context), "risk_mitigation": assess_risk_preparation(current_context, memory_insights), "user_engagement": evaluate_user_engagement_patterns(current_context) } weighted_score = calculate_weighted_success_score(success_factors) confidence_interval = calculate_confidence_interval(memory_insights.sample_size) return { "success_probability": weighted_score, "confidence": confidence_interval, "key_factors": identify_critical_success_factors(success_factors), "improvement_opportunities": suggest_probability_improvements(success_factors) } ``` ## Memory Creation During Context Restoration ### Context Restoration Outcome Tracking ```python def track_context_restoration_effectiveness(): restoration_memory = { "type": "context_restoration", "session_context": current_session_state, "memory_insights_provided": memory_intelligence_summary, "persona_activation_success": measure_activation_effectiveness(), "user_satisfaction": capture_user_feedback(), "task_completion_improvement": measure_efficiency_gains(), "accuracy_of_predictions": validate_proactive_insights(), "learning_opportunities": identify_restoration_improvements() } add_memories(restoration_memory, tags=["context-restoration", "effectiveness", "learning"]) ``` ### Proactive Intelligence Validation ```python def validate_proactive_insights(provided_insights, actual_outcomes): validation_results = {} for insight_type, predictions in provided_insights.items(): validation_results[insight_type] = { "accuracy": calculate_prediction_accuracy(predictions, actual_outcomes), "usefulness": measure_insight_application_rate(predictions), "impact": assess_outcome_improvement(predictions, actual_outcomes) } # Update memory intelligence based on validation update_proactive_intelligence_patterns(validation_results) return validation_results ``` ## Integration with Persona Activation ### Pre-Activation Context Assembly ```python def prepare_persona_activation_context(target_persona, session_state): # 1. Load immediate session context immediate_context = load_session_context() # 2. Gather memory intelligence memory_intelligence = gather_memory_intelligence(immediate_context, target_persona) # 3. Generate proactive insights proactive_insights = generate_proactive_insights( immediate_context, memory_intelligence, target_persona ) # 4. Synthesize comprehensive context comprehensive_context = synthesize_context( immediate_context, memory_intelligence, proactive_insights ) # 5. Personalize for target persona personalized_context = personalize_context(comprehensive_context, target_persona) return personalized_context ``` ### Post-Activation Context Validation ```python def validate_context_restoration_success(persona_response, user_feedback): validation_metrics = { "context_completeness": assess_context_gaps(persona_response), "memory_insight_relevance": evaluate_memory_application(persona_response), "proactive_intelligence_value": measure_proactive_insight_usage(persona_response), "user_satisfaction": capture_user_satisfaction(user_feedback), "efficiency_improvement": measure_time_to_productivity(persona_response) } # Create learning memory for future context restoration improvement create_context_restoration_learning_memory(validation_metrics) return validation_metrics ``` ## Error Handling & Fallback Strategies ### Memory System Unavailable ```python def fallback_context_restoration(): # Enhanced session state analysis enhanced_session_context = analyze_session_state_deeply() # Pattern recognition from session data local_patterns = extract_patterns_from_session() # Heuristic-based recommendations heuristic_insights = generate_heuristic_insights(enhanced_session_context) # Clear capability communication communicate_reduced_capability_scope() return create_fallback_context_briefing( enhanced_session_context, local_patterns, heuristic_insights ) ``` ### Memory Query Failures ```python def handle_memory_query_failures(failed_queries, session_context): # Attempt alternative query formulations alternative_queries = reformulate_queries(failed_queries) # Use cached memory insights if available cached_insights = retrieve_cached_memory_insights(session_context) # Generate context with available information partial_context = create_partial_context(cached_insights, session_context) # Flag limitations clearly flag_context_limitations(failed_queries) return partial_context ``` ## Quality Assurance & Continuous Improvement ### Context Quality Metrics - **Relevance Score**: How well memory insights match current context needs - **Completeness Score**: Coverage of important contextual factors - **Accuracy Score**: Correctness of proactive predictions and insights - **Usefulness Score**: Practical value of context information for persona activation - **Efficiency Score**: Time saved through effective context restoration ### Continuous Learning Integration ```python def continuous_context_restoration_learning(): # Analyze recent context restoration outcomes recent_restorations = get_recent_context_restorations() # Identify improvement patterns improvement_opportunities = analyze_restoration_effectiveness(recent_restorations) # Update context restoration algorithms update_context_intelligence(improvement_opportunities) # Refine memory query strategies optimize_memory_query_patterns(recent_restorations) # Enhance proactive intelligence generation improve_proactive_insight_algorithms(recent_restorations) ```