# Collaboration Orchestrator ## Multi-Agent Task Coordination for Claude Code The Collaboration Orchestrator enables sophisticated multi-persona workflows within Claude Code, allowing AI experts to work together seamlessly on complex development tasks. ### Collaboration Patterns for Claude Code #### 1. Sequential Collaboration Pattern ```yaml sequential_pattern: description: "Personas work in sequence, each building on previous work" use_cases: - feature_development: "Analyst → PM → Architect → Developer → QA" - security_review: "Security → Architect → Developer → QA" - performance_optimization: "Architect → Developer → QA → Platform Engineer" coordination_mechanism: handoff_protocol: - complete_current_work: "Finish assigned tasks" - document_deliverables: "Create handoff documentation" - notify_next_persona: "Send structured handoff message" - validate_prerequisites: "Ensure next persona has what they need" quality_gates: - completion_criteria: "Clear definition of 'done'" - validation_checks: "Automated and manual validations" - approval_requirements: "Who needs to approve handoff" - rollback_procedures: "What to do if issues found" # Example: Sequential API Development sequential_api_development: phase_1_analysis: persona: "analyst" deliverables: ["requirements-analysis.md", "user-stories.md"] claude_tools: ["WebSearch", "Read", "Write"] completion_criteria: - all_requirements_documented: true - stakeholder_interviews_complete: true - acceptance_criteria_defined: true phase_2_design: persona: "architect" inputs: ["requirements-analysis.md", "user-stories.md"] deliverables: ["api-design.md", "data-model.md", "integration-patterns.md"] claude_tools: ["Read", "Write", "Edit", "MultiEdit"] completion_criteria: - api_endpoints_defined: true - data_models_specified: true - security_considerations_documented: true phase_3_security_review: persona: "security" inputs: ["api-design.md", "data-model.md"] deliverables: ["security-assessment.md", "threat-model.md"] claude_tools: ["Read", "Grep", "WebFetch", "Write"] completion_criteria: - threat_model_complete: true - security_controls_specified: true - compliance_requirements_met: true ``` #### 2. Parallel Collaboration Pattern ```python async def parallel_collaboration_pattern(task_definition): """ Coordinate multiple personas working simultaneously on related tasks """ # Define parallel work streams work_streams = { 'frontend_development': { 'persona': 'frontend-dev', 'tasks': ['component-implementation', 'state-management', 'api-integration'], 'dependencies': ['api-spec', 'design-mockups'], 'deliverables': ['ui-components', 'integration-layer'] }, 'backend_development': { 'persona': 'backend-dev', 'tasks': ['api-implementation', 'database-design', 'business-logic'], 'dependencies': ['api-spec', 'data-requirements'], 'deliverables': ['api-endpoints', 'data-access-layer'] }, 'qa_preparation': { 'persona': 'qa', 'tasks': ['test-strategy', 'test-data-preparation', 'automation-setup'], 'dependencies': ['requirements', 'api-spec'], 'deliverables': ['test-plans', 'automated-tests'] }, 'devops_setup': { 'persona': 'platform-engineer', 'tasks': ['ci-cd-pipeline', 'infrastructure-setup', 'monitoring'], 'dependencies': ['deployment-requirements'], 'deliverables': ['deployment-pipeline', 'infrastructure-code'] } } # Create shared workspace for coordination shared_workspace = await create_shared_workspace(task_definition.project_id) # Initialize parallel execution parallel_tasks = [] for stream_id, stream_config in work_streams.items(): task = execute_work_stream( stream_id, stream_config, shared_workspace, task_definition.global_context ) parallel_tasks.append(task) # Monitor parallel execution with coordination coordination_result = await coordinate_parallel_execution( parallel_tasks, shared_workspace ) return coordination_result async def coordinate_parallel_execution(parallel_tasks, shared_workspace): """ Coordinate parallel work streams with conflict resolution and synchronization """ coordination_state = { 'active_tasks': parallel_tasks, 'completed_tasks': [], 'blocked_tasks': [], 'conflicts': [], 'shared_resources': shared_workspace.resources } while coordination_state['active_tasks']: # Check for task completions completed = await check_task_completions(coordination_state['active_tasks']) coordination_state['completed_tasks'].extend(completed) coordination_state['active_tasks'] = [ task for task in coordination_state['active_tasks'] if task not in completed ] # Detect and resolve conflicts conflicts = await detect_resource_conflicts(coordination_state) if conflicts: resolution_results = await resolve_conflicts(conflicts, shared_workspace) coordination_state['conflicts'].extend(resolution_results) # Handle blocked tasks blocked_tasks = await identify_blocked_tasks(coordination_state['active_tasks']) if blocked_tasks: unblock_results = await attempt_to_unblock_tasks( blocked_tasks, coordination_state ) coordination_state['blocked_tasks'].extend(unblock_results) # Synchronize shared state await synchronize_shared_workspace(shared_workspace, coordination_state) # Brief pause before next coordination cycle await asyncio.sleep(1) # Final integration of parallel work integration_result = await integrate_parallel_outputs( coordination_state['completed_tasks'], shared_workspace ) return { 'coordination_summary': coordination_state, 'integration_result': integration_result, 'final_deliverables': integration_result.consolidated_outputs } ``` #### 3. Consultative Collaboration Pattern ```python async def consultative_collaboration(primary_persona, consultation_needs): """ Enable primary persona to consult with experts as needed """ consultation_session = { 'session_id': generate_uuid(), 'primary_persona': primary_persona, 'consultation_requests': [], 'expert_responses': [], 'decisions_made': [] } for consultation in consultation_needs: # Prepare consultation request consultation_request = { 'id': generate_uuid(), 'expert_needed': consultation['expert_domain'], 'question': consultation['question'], 'context': consultation['context'], 'urgency': consultation.get('urgency', 'normal'), 'claude_tools_available': consultation.get('tools', ['Read', 'Write', 'WebFetch']) } # Route to appropriate expert expert_persona = select_expert_for_domain(consultation['expert_domain']) # Execute consultation using Claude Code tools expert_response = await execute_expert_consultation( expert_persona, consultation_request, consultation_session ) consultation_session['expert_responses'].append(expert_response) # Apply expert recommendations if expert_response.requires_action: action_result = await apply_expert_recommendations( expert_response, primary_persona, consultation_session ) consultation_session['decisions_made'].append(action_result) return consultation_session async def execute_expert_consultation(expert_persona, consultation_request, session): """ Execute a single expert consultation using Claude Code capabilities """ # Prepare expert context expert_context = await prepare_expert_context( expert_persona, consultation_request, session['primary_persona'] ) # Execute consultation based on domain if expert_persona == 'security': consultation_result = await security_consultation( consultation_request, expert_context ) elif expert_persona == 'architect': consultation_result = await architecture_consultation( consultation_request, expert_context ) elif expert_persona == 'qa': consultation_result = await quality_consultation( consultation_request, expert_context ) elif expert_persona == 'platform-engineer': consultation_result = await infrastructure_consultation( consultation_request, expert_context ) # Document consultation for future reference await document_consultation( consultation_request, consultation_result, session ) return consultation_result # Example: Security Consultation Implementation async def security_consultation(consultation_request, expert_context): """ Security expert consultation using Claude Code tools """ # Analyze security implications using Grep and Read if 'code_review' in consultation_request['context']: code_files = consultation_request['context']['files'] # Use Grep to find security-relevant patterns security_patterns = await grep_security_patterns(code_files) # Use Read to analyze specific security concerns detailed_analysis = await analyze_security_details( code_files, security_patterns ) # Use WebFetch to check latest security advisories latest_threats = await fetch_latest_security_advisories( expert_context['technology_stack'] ) # Generate security recommendations recommendations = generate_security_recommendations( detailed_analysis, latest_threats, expert_context ) # Create implementation guidance using Write tool implementation_guide = await create_security_implementation_guide( recommendations, consultation_request['context'] ) return { 'expert': 'security', 'analysis': detailed_analysis, 'recommendations': recommendations, 'implementation_guide': implementation_guide, 'risk_assessment': assess_security_risks(detailed_analysis), 'requires_action': len(recommendations) > 0 } ``` ### Collaboration Workspace Management #### Shared Workspace for Claude Code ```yaml shared_workspace: workspace_structure: shared_files: - collaboration_notes.md: "Real-time collaboration notes" - decision_log.md: "Decisions made during collaboration" - artifact_registry.md: "Registry of all created artifacts" - conflict_resolution_log.md: "Record of resolved conflicts" persona_workspaces: - architect/: "Architecture-specific working files" - security/: "Security analysis and reports" - qa/: "Test plans and quality assessments" - dev/: "Implementation artifacts" integration_area: - final_deliverables/: "Consolidated outputs" - review_materials/: "Items pending review" - approved_artifacts/: "Finalized deliverables" access_control: read_permissions: - all_personas: ["shared_files/*", "*/README.md"] - persona_specific: ["own_workspace/*"] - integration_access: ["integration_area/*"] write_permissions: - collaborative_files: ["collaboration_notes.md", "decision_log.md"] - persona_workspaces: ["own_workspace/*"] - controlled_integration: ["integration_area/*"] # requires approval synchronization_rules: real_time_sync: - collaboration_notes.md: "immediate_sync" - decision_log.md: "immediate_sync" - conflict_resolution_log.md: "immediate_sync" batch_sync: - persona_workspaces: "every_5_minutes" - integration_area: "on_explicit_request" conflict_resolution: - concurrent_edits: "merge_with_annotations" - contradictory_decisions: "escalate_to_orchestrator" - resource_conflicts: "priority_based_resolution" ``` ### Conflict Detection and Resolution #### Intelligent Conflict Management ```python async def detect_and_resolve_collaboration_conflicts(): """ Continuously monitor for collaboration conflicts and resolve them intelligently """ conflict_monitor = { 'file_conflicts': await monitor_concurrent_file_edits(), 'decision_conflicts': await monitor_contradictory_decisions(), 'resource_conflicts': await monitor_resource_contention(), 'timeline_conflicts': await monitor_schedule_conflicts() } detected_conflicts = [] # Check each conflict type for conflict_type, monitor in conflict_monitor.items(): conflicts = await monitor.check_for_conflicts() if conflicts: detected_conflicts.extend([ {'type': conflict_type, 'details': conflict} for conflict in conflicts ]) # Resolve conflicts using appropriate strategies resolution_results = [] for conflict in detected_conflicts: resolution_strategy = select_resolution_strategy(conflict) resolution_result = await execute_resolution_strategy( conflict, resolution_strategy ) resolution_results.append(resolution_result) return { 'conflicts_detected': len(detected_conflicts), 'conflicts_resolved': len([r for r in resolution_results if r.success]), 'pending_conflicts': [r for r in resolution_results if not r.success], 'resolution_summary': resolution_results } async def execute_resolution_strategy(conflict, strategy): """ Execute specific conflict resolution strategy """ if strategy.type == 'expertise_hierarchy': # Defer to domain expert expert_decision = await consult_domain_expert(conflict, strategy.expert) resolution = await apply_expert_decision(expert_decision, conflict) elif strategy.type == 'collaborative_merge': # Merge conflicting work collaboratively merge_session = await initiate_collaborative_merge(conflict) resolution = await execute_collaborative_merge(merge_session) elif strategy.type == 'sequential_ordering': # Order conflicting operations sequentially operation_order = await determine_optimal_sequence(conflict) resolution = await execute_sequential_operations(operation_order) elif strategy.type == 'resource_sharing': # Share contested resources sharing_plan = await create_resource_sharing_plan(conflict) resolution = await implement_resource_sharing(sharing_plan) # Document resolution for learning await document_conflict_resolution(conflict, strategy, resolution) return resolution ``` ### Performance Optimization for Collaboration #### Efficient Multi-Persona Coordination ```yaml performance_optimization: parallel_processing: independent_tasks: - identify_dependencies: "Map task interdependencies" - create_execution_graph: "Optimize execution order" - maximize_parallelism: "Run independent tasks simultaneously" resource_pooling: - shared_tool_access: "Coordinate Claude Code tool usage" - memory_sharing: "Share computed results between personas" - cache_coordination: "Avoid duplicate computations" communication_efficiency: message_batching: - group_related_messages: "Bundle related communications" - compress_large_contexts: "Reduce context transfer overhead" - prioritize_urgent_communications: "Fast-track critical messages" smart_routing: - direct_expertise_matching: "Route directly to best expert" - avoid_unnecessary_routing: "Skip irrelevant personas" - predictive_pre-positioning: "Anticipate consultation needs" context_optimization: incremental_updates: - delta_synchronization: "Only sync changes, not full context" - selective_distribution: "Send relevant context only" - lazy_loading: "Load context on demand" intelligent_caching: - context_snapshots: "Cache frequently accessed contexts" - prediction_caching: "Pre-cache likely needed contexts" - adaptive_expiration: "Intelligent cache invalidation" ``` ### Claude Code Integration Commands ```bash # Collaboration initiation bmad collaborate start --pattern "sequential" --participants "analyst,architect,dev" bmad collaborate start --pattern "parallel" --workstreams "frontend,backend,qa" bmad collaborate start --pattern "consultative" --primary "architect" --experts "security,qa" # Workspace management bmad workspace create --shared --participants "architect,security,qa" bmad workspace sync --resolve-conflicts bmad workspace status --show-conflicts # Collaboration monitoring bmad collaborate status --active-sessions bmad collaborate conflicts --list --resolve bmad collaborate handoff --from "architect" --to "dev" --validate # Performance and optimization bmad collaborate optimize --parallel-efficiency bmad collaborate analyze --bottlenecks bmad collaborate report --session "uuid" --detailed ``` This Collaboration Orchestrator transforms Claude Code into a sophisticated multi-agent workspace where AI personas can work together efficiently, handling complex development tasks that require multiple areas of expertise while maintaining coordination and resolving conflicts intelligently.