# BMAD Request Analysis System ## Overview The Request Analysis System provides comprehensive natural language processing and context analysis capabilities to understand user requests and extract relevant information for intelligent persona routing. ## Core Analysis Components ### Natural Language Processing Pipeline #### Text Preprocessing ```python def preprocess_request(request_text): """ Comprehensive text preprocessing for request analysis """ # Basic text cleaning cleaned_text = clean_text(request_text) # Tokenization with context preservation tokens = advanced_tokenize(cleaned_text) # Named Entity Recognition entities = extract_entities(tokens) # Part-of-speech tagging pos_tags = pos_tag(tokens) # Dependency parsing for relationship extraction dependencies = parse_dependencies(tokens) return { 'cleaned_text': cleaned_text, 'tokens': tokens, 'entities': entities, 'pos_tags': pos_tags, 'dependencies': dependencies } def extract_entities(tokens): """Extract domain-specific entities from request""" entity_patterns = { 'technologies': ['react', 'typescript', 'nodejs', 'python', 'aspnet', 'docker', 'kubernetes'], 'actions': ['create', 'build', 'optimize', 'debug', 'review', 'analyze', 'document'], 'artifacts': ['api', 'component', 'architecture', 'database', 'documentation', 'test'], 'domains': ['frontend', 'backend', 'security', 'performance', 'deployment', 'integration'] } # Implementation for entity extraction return extracted_entities ``` #### Intent Classification Framework \```yaml intent_classification: primary_intents: creation: keywords: ["create", "build", "develop", "implement", "design", "generate"] confidence_boosters: ["new", "from scratch", "initial", "prototype"] examples: - "Create a new React component for user authentication" - "Build a REST API for user management" - "Design a microservices architecture" analysis: keywords: ["analyze", "review", "assess", "evaluate", "examine", "investigate"] confidence_boosters: ["existing", "current", "performance", "security"] examples: - "Analyze the performance of our current system" - "Review the security of our API endpoints" - "Assess the scalability of our architecture" optimization: keywords: ["optimize", "improve", "enhance", "refactor", "tune", "upgrade"] confidence_boosters: ["better", "faster", "efficient", "scalable"] examples: - "Optimize the performance of our React application" - "Improve the security of our authentication system" - "Enhance the user experience of our dashboard" troubleshooting: keywords: ["debug", "fix", "resolve", "troubleshoot", "diagnose", "solve"] confidence_boosters: ["issue", "problem", "error", "bug", "failure"] examples: - "Debug a memory leak in our Node.js application" - "Fix authentication issues in our React app" - "Resolve performance problems in our database" documentation: keywords: ["document", "explain", "describe", "guide", "manual", "specification"] confidence_boosters: ["how to", "step by step", "tutorial", "reference"] examples: - "Document our API endpoints and usage" - "Create a deployment guide for our application" - "Explain our system architecture to new developers" ``` ### Complexity Assessment Engine #### Multi-Dimensional Complexity Analysis ```python def assess_request_complexity(request_features): """ Assess request complexity across multiple dimensions """ # Technical complexity assessment technical_complexity = assess_technical_complexity(request_features) # Scope complexity assessment scope_complexity = assess_scope_complexity(request_features) # Domain complexity assessment domain_complexity = assess_domain_complexity(request_features) # Stakeholder complexity assessment stakeholder_complexity = assess_stakeholder_complexity(request_features) # Calculate overall complexity score overall_complexity = calculate_weighted_complexity( technical_complexity, scope_complexity, domain_complexity, stakeholder_complexity ) return { 'overall_complexity': overall_complexity, 'technical_complexity': technical_complexity, 'scope_complexity': scope_complexity, 'domain_complexity': domain_complexity, 'stakeholder_complexity': stakeholder_complexity, 'complexity_level': map_to_complexity_level(overall_complexity) } def assess_technical_complexity(features): """Assess technical complexity based on various factors""" complexity_indicators = { 'technology_stack_size': len(features.technologies), 'integration_points': count_integration_requirements(features), 'performance_requirements': assess_performance_requirements(features), 'security_requirements': assess_security_requirements(features), 'scalability_requirements': assess_scalability_requirements(features) } return calculate_technical_complexity_score(complexity_indicators) ``` #### Complexity Level Mapping \```yaml complexity_levels: simple: score_range: "0.0 - 0.3" characteristics: - "Single technology stack" - "Well-defined requirements" - "Limited scope" - "Standard implementation patterns" recommended_personas: ["scrum_master", "product_owner", "v0_ux_ui_architect"] moderate: score_range: "0.3 - 0.6" characteristics: - "Multiple technologies involved" - "Some ambiguity in requirements" - "Cross-functional considerations" - "Integration requirements" recommended_personas: ["analyst", "product_manager", "design_architect", "architect"] complex: score_range: "0.6 - 0.8" characteristics: - "Multiple domains and technologies" - "High ambiguity or uncertainty" - "Significant integration challenges" - "Performance or security critical" recommended_personas: ["architect", "enterprise_architecture_consultant", "security_integration_specialist"] expert: score_range: "0.8 - 1.0" characteristics: - "Highly specialized knowledge required" - "Critical business impact" - "Complex technical challenges" - "Enterprise-scale considerations" recommended_personas: ["enterprise_architecture_consultant", "advanced_troubleshooting_specialist", "performance_optimization_specialist"] ``` ### Technology Stack Detection #### Technology Pattern Recognition \```yaml technology_patterns: frontend_frameworks: react: keywords: ["react", "jsx", "tsx", "react-dom", "create-react-app"] file_extensions: [".jsx", ".tsx"] package_indicators: ["react", "@types/react"] vue: keywords: ["vue", "vuejs", "vue-cli", "nuxt"] file_extensions: [".vue"] package_indicators: ["vue", "@vue/cli"] angular: keywords: ["angular", "ng", "typescript", "angular-cli"] file_extensions: [".component.ts", ".service.ts"] package_indicators: ["@angular/core", "@angular/cli"] backend_frameworks: nodejs: keywords: ["node", "nodejs", "express", "npm", "yarn"] file_indicators: ["package.json", "server.js", "app.js"] package_indicators: ["express", "fastify", "koa"] aspnet: keywords: ["asp.net", "dotnet", "c#", "mvc", "web api"] file_extensions: [".cs", ".csproj"] package_indicators: ["Microsoft.AspNetCore"] python: keywords: ["python", "django", "flask", "fastapi", "pip"] file_extensions: [".py"] package_indicators: ["django", "flask", "fastapi"] databases: sql_databases: keywords: ["sql", "mysql", "postgresql", "sql server", "oracle"] file_extensions: [".sql"] nosql_databases: keywords: ["mongodb", "redis", "elasticsearch", "dynamodb"] cloud_platforms: aws: keywords: ["aws", "amazon", "ec2", "s3", "lambda", "cloudformation"] azure: keywords: ["azure", "microsoft", "arm template", "azure functions"] gcp: keywords: ["google cloud", "gcp", "compute engine", "cloud functions"] ``` #### Technology Expertise Mapping ```python def map_technologies_to_personas(detected_technologies): """ Map detected technologies to persona expertise levels """ persona_technology_matrix = { 'v0_ux_ui_architect': { 'primary': ['react', 'typescript', 'javascript', 'css', 'html'], 'secondary': ['vue', 'angular', 'sass', 'tailwind'] }, 'architect': { 'primary': ['nodejs', 'python', 'aspnet', 'microservices', 'api_design'], 'secondary': ['react', 'databases', 'cloud_platforms'] }, 'performance_optimization_specialist': { 'primary': ['performance_monitoring', 'caching', 'database_optimization'], 'secondary': ['nodejs', 'python', 'react', 'aspnet'] }, 'security_integration_specialist': { 'primary': ['security_frameworks', 'authentication', 'encryption'], 'secondary': ['aspnet', 'nodejs', 'cloud_security'] }, 'devops_documentation_specialist': { 'primary': ['docker', 'kubernetes', 'ci_cd', 'cloud_platforms'], 'secondary': ['monitoring', 'logging', 'infrastructure_as_code'] } } # Calculate persona scores based on technology overlap persona_scores = {} for persona, expertise in persona_technology_matrix.items(): score = calculate_technology_overlap_score( detected_technologies, expertise ) persona_scores[persona] = score return persona_scores ``` ### Context Analysis Framework #### Project Phase Detection \```yaml project_phases: initiation: indicators: ["new project", "starting", "initial", "brainstorm", "research"] artifacts: ["project brief", "requirements", "research findings"] recommended_workflow: ["analyst", "product_manager"] planning: indicators: ["plan", "design", "architecture", "strategy", "roadmap"] artifacts: ["prd", "architecture document", "design system"] recommended_workflow: ["architect", "design_architect", "enterprise_architecture_consultant"] development: indicators: ["implement", "code", "build", "develop", "create"] artifacts: ["components", "apis", "features", "tests"] recommended_workflow: ["v0_ux_ui_architect", "scrum_master", "product_owner"] testing: indicators: ["test", "validate", "verify", "quality", "review"] artifacts: ["test cases", "quality reports", "code reviews"] recommended_workflow: ["polyglot_code_review_specialist", "performance_optimization_specialist"] deployment: indicators: ["deploy", "release", "production", "launch", "go-live"] artifacts: ["deployment guides", "runbooks", "monitoring"] recommended_workflow: ["devops_documentation_specialist", "security_integration_specialist"] maintenance: indicators: ["maintain", "support", "monitor", "optimize", "troubleshoot"] artifacts: ["monitoring dashboards", "incident reports", "optimization plans"] recommended_workflow: ["advanced_troubleshooting_specialist", "performance_optimization_specialist"] ``` #### Urgency Assessment ```python def assess_request_urgency(request_text, context): """ Assess the urgency level of a request based on various indicators """ urgency_indicators = { 'critical': { 'keywords': ['critical', 'urgent', 'emergency', 'down', 'broken', 'security breach'], 'context_indicators': ['production_issue', 'system_failure', 'data_loss'], 'score_weight': 1.0 }, 'high': { 'keywords': ['asap', 'quickly', 'soon', 'priority', 'important', 'blocking'], 'context_indicators': ['deadline_approaching', 'stakeholder_pressure'], 'score_weight': 0.8 }, 'medium': { 'keywords': ['needed', 'required', 'should', 'would like', 'planning'], 'context_indicators': ['scheduled_work', 'planned_feature'], 'score_weight': 0.5 }, 'low': { 'keywords': ['eventually', 'when possible', 'nice to have', 'future'], 'context_indicators': ['research', 'exploration', 'optimization'], 'score_weight': 0.2 } } # Calculate urgency score urgency_score = calculate_urgency_score(request_text, context, urgency_indicators) # Map score to urgency level urgency_level = map_score_to_urgency_level(urgency_score) return { 'urgency_level': urgency_level, 'urgency_score': urgency_score, 'routing_priority': get_routing_priority(urgency_level) } ``` ## Advanced Analysis Features ### Semantic Understanding \```yaml semantic_analysis: relationship_extraction: - "subject_verb_object_relationships" - "dependency_relationships" - "causal_relationships" - "temporal_relationships" concept_mapping: - "domain_concept_identification" - "technical_concept_mapping" - "business_concept_extraction" - "process_concept_recognition" context_inference: - "implicit_requirement_inference" - "stakeholder_inference" - "constraint_inference" - "goal_inference" ``` ### Continuous Learning Integration ```python def update_analysis_models(feedback_data): """ Update analysis models based on user feedback and routing success """ # Update intent classification model update_intent_classifier(feedback_data.intent_feedback) # Update complexity assessment model update_complexity_model(feedback_data.complexity_feedback) # Update technology detection patterns update_technology_patterns(feedback_data.technology_feedback) # Update urgency assessment model update_urgency_model(feedback_data.urgency_feedback) # Retrain models with new data retrain_analysis_models() return { 'models_updated': True, 'performance_improvement': calculate_performance_improvement(), 'next_update_scheduled': schedule_next_update() } ``` ### Performance Monitoring \```yaml analysis_performance_metrics: accuracy_metrics: intent_classification_accuracy: "> 92%" complexity_assessment_accuracy: "> 88%" technology_detection_accuracy: "> 95%" urgency_assessment_accuracy: "> 85%" performance_metrics: analysis_processing_time: "< 200ms" memory_usage_per_analysis: "< 10MB" concurrent_analysis_capacity: "> 100 requests/second" quality_metrics: false_positive_rate: "< 5%" false_negative_rate: "< 8%" confidence_calibration: "> 90%" ```