# BMAD Context Management Engine ## Overview The Context Management Engine provides sophisticated context preservation, sharing, and persistence across persona interactions, ensuring seamless continuity and intelligent context-aware decision making throughout the BMAD Method workflow. ## Core Architecture ### Context Data Model #### Hierarchical Context Structure \```yaml context_hierarchy: global_context: description: "System-wide context shared across all interactions" components: - "user_preferences" - "system_configuration" - "global_constraints" - "organizational_standards" project_context: description: "Project-specific context shared within project scope" components: - "project_goals_and_objectives" - "stakeholder_information" - "technical_requirements" - "timeline_and_milestones" - "budget_and_resource_constraints" - "quality_standards" session_context: description: "Session-specific context for current interaction" components: - "current_conversation_history" - "active_personas" - "workflow_state" - "pending_decisions" - "temporary_artifacts" persona_context: description: "Persona-specific context and working memory" components: - "persona_working_memory" - "specialized_knowledge_cache" - "persona_specific_preferences" - "task_specific_context" - "collaboration_history" ``` #### Context Entity Schema \```json { "context_entity": { "id": "unique_context_identifier", "type": "global|project|session|persona", "scope": "context_scope_definition", "created_at": "timestamp", "updated_at": "timestamp", "version": "context_version_number", "metadata": { "owner": "context_owner", "access_level": "public|private|restricted", "retention_policy": "retention_duration", "encryption_level": "none|standard|high" }, "content": { "structured_data": {}, "unstructured_data": "", "relationships": [], "tags": [], "priority": "high|medium|low" }, "access_control": { "read_permissions": [], "write_permissions": [], "share_permissions": [] } } } ``` ### Context Lifecycle Management #### Context Creation and Initialization ```python def create_context(context_type, scope, initial_data, metadata=None): """ Create new context entity with proper initialization """ context_id = generate_context_id(context_type, scope) context_entity = { 'id': context_id, 'type': context_type, 'scope': scope, 'created_at': get_current_timestamp(), 'updated_at': get_current_timestamp(), 'version': 1, 'metadata': initialize_metadata(metadata), 'content': structure_initial_data(initial_data), 'access_control': initialize_access_control(context_type) } # Validate context structure validate_context_structure(context_entity) # Store context store_context(context_entity) # Initialize relationships initialize_context_relationships(context_entity) return context_id def initialize_metadata(metadata): """Initialize context metadata with defaults""" default_metadata = { 'owner': get_current_user(), 'access_level': 'private', 'retention_policy': '30_days', 'encryption_level': 'standard' } if metadata: default_metadata.update(metadata) return default_metadata ``` #### Context Update and Versioning \```yaml versioning_strategy: version_control: strategy: "semantic_versioning" major_changes: "structural_modifications" minor_changes: "content_additions" patch_changes: "content_updates" change_tracking: track_changes: true change_log_retention: "90_days" diff_calculation: "intelligent_diff" conflict_resolution: concurrent_updates: "last_writer_wins_with_merge" conflict_detection: "content_hash_comparison" merge_strategy: "intelligent_merge_with_user_review" rollback_capability: rollback_support: true rollback_window: "7_days" rollback_granularity: "field_level" ``` ### Context Sharing and Synchronization #### Intelligent Context Sharing Algorithm ```python def share_context_between_personas(source_persona, target_persona, context_filter=None): """ Intelligently share relevant context between personas """ # Get source persona context source_context = get_persona_context(source_persona) # Analyze target persona requirements target_requirements = analyze_persona_context_needs(target_persona) # Filter relevant context relevant_context = filter_relevant_context( source_context, target_requirements, context_filter ) # Apply privacy and security filters filtered_context = apply_privacy_filters(relevant_context, target_persona) # Transform context for target persona transformed_context = transform_context_for_persona(filtered_context, target_persona) # Validate context compatibility validate_context_compatibility(transformed_context, target_persona) # Transfer context transfer_context(transformed_context, target_persona) # Log context sharing log_context_sharing(source_persona, target_persona, transformed_context) return { 'transfer_successful': True, 'context_items_transferred': len(transformed_context), 'transfer_timestamp': get_current_timestamp() } def filter_relevant_context(source_context, target_requirements, context_filter): """Filter context based on relevance and requirements""" relevance_scores = {} for context_item in source_context: # Calculate relevance score relevance_score = calculate_context_relevance(context_item, target_requirements) # Apply custom filters if provided if context_filter: relevance_score = apply_custom_filter(relevance_score, context_item, context_filter) # Include if above threshold if relevance_score >= get_relevance_threshold(): relevance_scores[context_item.id] = relevance_score # Sort by relevance and return top items sorted_items = sorted(relevance_scores.items(), key=lambda x: x[1], reverse=True) return [get_context_item(item_id) for item_id, score in sorted_items] ``` #### Context Synchronization Strategies \```yaml synchronization_patterns: real_time_sync: description: "Immediate context synchronization" use_cases: ["critical_decisions", "urgent_handoffs", "error_conditions"] latency_target: "< 100ms" batch_sync: description: "Periodic batch synchronization" use_cases: ["routine_updates", "background_processing", "optimization"] frequency: "every_5_minutes" event_driven_sync: description: "Synchronization triggered by specific events" use_cases: ["persona_switches", "milestone_completion", "context_changes"] trigger_events: ["persona_handoff", "workflow_transition", "user_action"] lazy_sync: description: "On-demand synchronization when context is accessed" use_cases: ["infrequent_access", "large_context_sets", "resource_optimization"] cache_strategy: "intelligent_prefetching" ``` ### Context Persistence and Storage #### Multi-Tier Storage Architecture \```yaml storage_tiers: hot_storage: description: "Frequently accessed context in memory" technology: "redis_cluster" capacity: "active_session_context" access_time: "< 10ms" retention: "session_duration" warm_storage: description: "Recently accessed context in fast storage" technology: "ssd_database" capacity: "recent_project_context" access_time: "< 50ms" retention: "30_days" cold_storage: description: "Archived context in cost-effective storage" technology: "object_storage" capacity: "historical_context" access_time: "< 500ms" retention: "1_year" archive_storage: description: "Long-term archived context" technology: "compressed_archive" capacity: "compliance_retention" access_time: "< 5_seconds" retention: "7_years" ``` #### Context Persistence Strategies ```python def persist_context(context_entity, persistence_level='standard'): """ Persist context with appropriate storage strategy """ # Determine storage tier based on context type and access patterns storage_tier = determine_storage_tier(context_entity, persistence_level) # Prepare context for storage prepared_context = prepare_context_for_storage(context_entity, storage_tier) # Apply compression if appropriate if should_compress_context(prepared_context, storage_tier): prepared_context = compress_context(prepared_context) # Apply encryption based on sensitivity if requires_encryption(context_entity): prepared_context = encrypt_context(prepared_context, context_entity.metadata.encryption_level) # Store in appropriate tier storage_result = store_in_tier(prepared_context, storage_tier) # Update context index update_context_index(context_entity.id, storage_tier, storage_result.location) # Set up retention policy schedule_retention_policy(context_entity.id, context_entity.metadata.retention_policy) return { 'persistence_successful': True, 'storage_tier': storage_tier, 'storage_location': storage_result.location, 'compression_applied': prepared_context.compressed, 'encryption_applied': prepared_context.encrypted } def retrieve_context(context_id, access_pattern='standard'): """ Retrieve context with intelligent caching and prefetching """ # Check hot cache first cached_context = check_hot_cache(context_id) if cached_context: update_access_statistics(context_id, 'cache_hit') return cached_context # Locate context in storage tiers storage_location = locate_context_in_storage(context_id) # Retrieve from appropriate tier stored_context = retrieve_from_storage(storage_location) # Decrypt if necessary if stored_context.encrypted: stored_context = decrypt_context(stored_context) # Decompress if necessary if stored_context.compressed: stored_context = decompress_context(stored_context) # Cache in hot storage for future access cache_in_hot_storage(context_id, stored_context) # Prefetch related context if appropriate if should_prefetch_related_context(context_id, access_pattern): prefetch_related_context(context_id) # Update access statistics update_access_statistics(context_id, 'storage_retrieval') return stored_context ``` ### Privacy and Security Framework #### Access Control and Permissions \```yaml access_control_model: role_based_access: roles: - "context_owner" - "project_member" - "persona_user" - "system_administrator" - "auditor" permissions: read: ["view_context_content", "access_context_metadata"] write: ["modify_context_content", "update_context_metadata"] share: ["grant_access_to_others", "create_context_links"] delete: ["remove_context", "purge_context_history"] admin: ["manage_access_control", "configure_retention_policies"] attribute_based_access: attributes: - "context_sensitivity_level" - "user_clearance_level" - "project_membership" - "persona_authorization" - "time_based_restrictions" policies: - "high_sensitivity_requires_high_clearance" - "project_context_requires_project_membership" - "persona_context_requires_persona_authorization" - "time_restricted_context_enforces_time_limits" ``` #### Data Privacy and Compliance ```python def apply_privacy_protection(context_entity, target_persona): """ Apply privacy protection based on context sensitivity and target persona """ # Assess context sensitivity sensitivity_level = assess_context_sensitivity(context_entity) # Get target persona clearance persona_clearance = get_persona_clearance_level(target_persona) # Apply privacy filters if sensitivity_level > persona_clearance: # Redact sensitive information filtered_context = redact_sensitive_information(context_entity, sensitivity_level, persona_clearance) else: filtered_context = context_entity # Apply data minimization minimized_context = apply_data_minimization(filtered_context, target_persona) # Log privacy protection actions log_privacy_protection(context_entity.id, target_persona, sensitivity_level, persona_clearance) return minimized_context def redact_sensitive_information(context_entity, sensitivity_level, clearance_level): """Redact information based on sensitivity and clearance levels""" redaction_rules = { 'personal_data': ['names', 'emails', 'phone_numbers', 'addresses'], 'financial_data': ['budgets', 'costs', 'revenue_projections'], 'technical_secrets': ['api_keys', 'passwords', 'proprietary_algorithms'], 'business_confidential': ['strategic_plans', 'competitive_analysis', 'internal_processes'] } redacted_context = copy.deepcopy(context_entity) for data_type, fields in redaction_rules.items(): if should_redact_data_type(data_type, sensitivity_level, clearance_level): redacted_context = redact_fields(redacted_context, fields) return redacted_context ``` ### Performance Optimization #### Intelligent Caching Strategy \```yaml caching_strategies: multi_level_cache: l1_cache: description: "In-memory cache for immediate access" technology: "application_memory" capacity: "100MB" ttl: "5_minutes" l2_cache: description: "Distributed cache for shared access" technology: "redis_cluster" capacity: "1GB" ttl: "30_minutes" l3_cache: description: "Persistent cache for warm data" technology: "ssd_cache" capacity: "10GB" ttl: "24_hours" cache_policies: eviction_policy: "lru_with_priority_boost" prefetch_strategy: "predictive_prefetching" invalidation_strategy: "smart_invalidation" cache_optimization: compression: "context_aware_compression" serialization: "efficient_binary_serialization" partitioning: "context_type_based_partitioning" ``` #### Context Retrieval Optimization ```python def optimize_context_retrieval(context_query, performance_target='standard'): """ Optimize context retrieval based on query patterns and performance targets """ # Analyze query pattern query_analysis = analyze_context_query(context_query) # Determine optimization strategy optimization_strategy = determine_optimization_strategy(query_analysis, performance_target) # Apply query optimization optimized_query = apply_query_optimization(context_query, optimization_strategy) # Execute with performance monitoring start_time = get_current_timestamp() if optimization_strategy.use_parallel_retrieval: results = execute_parallel_retrieval(optimized_query) else: results = execute_sequential_retrieval(optimized_query) end_time = get_current_timestamp() retrieval_time = end_time - start_time # Apply result optimization optimized_results = optimize_results(results, query_analysis) # Update performance metrics update_performance_metrics(context_query, retrieval_time, len(optimized_results)) # Learn from performance learn_from_retrieval_performance(context_query, optimization_strategy, retrieval_time) return { 'results': optimized_results, 'retrieval_time': retrieval_time, 'optimization_applied': optimization_strategy, 'performance_target_met': retrieval_time <= get_performance_target(performance_target) } ``` ### Context Intelligence and Learning #### Context Pattern Recognition \```yaml pattern_recognition: usage_patterns: frequent_access_patterns: "identify_commonly_accessed_context_combinations" temporal_patterns: "recognize_time_based_context_usage" persona_patterns: "learn_persona_specific_context_preferences" workflow_patterns: "understand_context_flow_in_workflows" optimization_opportunities: prefetch_candidates: "contexts_likely_to_be_accessed_together" cache_optimization: "contexts_that_benefit_from_longer_caching" compression_candidates: "contexts_suitable_for_compression" archival_candidates: "contexts_ready_for_archival" anomaly_detection: unusual_access_patterns: "detect_suspicious_context_access" performance_anomalies: "identify_performance_degradation" data_integrity_issues: "detect_context_corruption_or_inconsistency" ``` #### Adaptive Context Management ```python def adapt_context_management(usage_statistics, performance_metrics, user_feedback): """ Adapt context management strategies based on learning """ # Analyze usage patterns usage_patterns = analyze_usage_patterns(usage_statistics) # Identify optimization opportunities optimization_opportunities = identify_optimization_opportunities( usage_patterns, performance_metrics ) # Generate adaptation recommendations adaptations = generate_adaptation_recommendations( optimization_opportunities, user_feedback ) # Apply safe adaptations automatically safe_adaptations = filter_safe_adaptations(adaptations) apply_adaptations(safe_adaptations) # Queue risky adaptations for review risky_adaptations = filter_risky_adaptations(adaptations) queue_for_review(risky_adaptations) # Monitor adaptation impact monitor_adaptation_impact(safe_adaptations) return { 'adaptations_applied': len(safe_adaptations), 'adaptations_queued': len(risky_adaptations), 'expected_performance_improvement': estimate_performance_improvement(adaptations) } ``` ### Monitoring and Analytics #### Context Health Monitoring \```yaml health_metrics: availability_metrics: context_availability: "> 99.9%" retrieval_success_rate: "> 99.5%" storage_reliability: "> 99.99%" performance_metrics: average_retrieval_time: "< 100ms" 95th_percentile_retrieval_time: "< 200ms" cache_hit_ratio: "> 80%" quality_metrics: context_accuracy: "> 95%" context_completeness: "> 90%" context_relevance: "> 85%" security_metrics: unauthorized_access_attempts: "< 0.1%" privacy_violations: "0" data_breach_incidents: "0" ``` #### Analytics and Insights ```python def generate_context_analytics(time_period='last_30_days'): """ Generate comprehensive analytics on context usage and performance """ # Collect metrics data usage_data = collect_usage_metrics(time_period) performance_data = collect_performance_metrics(time_period) quality_data = collect_quality_metrics(time_period) # Generate insights insights = { 'usage_insights': analyze_usage_trends(usage_data), 'performance_insights': analyze_performance_trends(performance_data), 'quality_insights': analyze_quality_trends(quality_data), 'optimization_recommendations': generate_optimization_recommendations( usage_data, performance_data, quality_data ) } # Create visualizations visualizations = create_analytics_visualizations(insights) # Generate reports reports = generate_analytics_reports(insights, visualizations) return { 'insights': insights, 'visualizations': visualizations, 'reports': reports, 'generated_at': get_current_timestamp() } ```