# Error Detection & Recovery System - Reliability Engineering ## System Overview The Error Detection & Recovery System provides comprehensive failure detection, graceful degradation, automatic recovery, and learning mechanisms to ensure high system reliability and user experience. ## Error Detection Framework ### Multi-Layer Error Detection ```yaml error_detection_layers: layer_1_syntax_validation: scope: "template_rendering_and_data_structure" detection_speed: "immediate" checks: - template_syntax_errors - variable_substitution_failures - json_schema_validation_failures - required_field_missing_errors auto_recovery: true layer_2_content_quality: scope: "agent_output_semantic_validation" detection_speed: "real_time" checks: - placeholder_text_detection - vague_language_detection - incomplete_section_detection - logical_inconsistency_detection auto_recovery: "limited" layer_3_cross_agent_consistency: scope: "multi_agent_output_alignment" detection_speed: "post_agent_completion" checks: - requirement_contradiction_detection - technical_feasibility_conflicts - timeline_inconsistencies - scope_creep_detection auto_recovery: false # Requires consensus building layer_4_workflow_integrity: scope: "overall_workflow_health" detection_speed: "continuous" checks: - workflow_deadlock_detection - infinite_retry_loop_detection - resource_exhaustion_detection - quality_degradation_trends auto_recovery: "system_level" ``` ### Error Classification System ```yaml error_categories: transient_errors: characteristics: ["temporary", "retry_likely_to_succeed", "system_recoverable"] examples: - timeout_errors - temporary_resource_unavailability - network_connectivity_issues - context_lock_conflicts recovery_strategy: "automatic_retry_with_backoff" max_retries: 3 deterministic_errors: characteristics: ["repeatable", "same_input_same_failure", "logic_issue"] examples: - invalid_template_variables - malformed_context_data - agent_prompt_logic_errors - workflow_configuration_errors recovery_strategy: "fallback_to_simplified_approach" escalation: "immediate" quality_errors: characteristics: ["subjective", "quality_below_threshold", "content_issue"] examples: - low_quality_agent_output - insufficient_detail_level - unclear_requirements - incomplete_specifications recovery_strategy: "iterative_improvement" max_iterations: 2 system_errors: characteristics: ["infrastructure", "resource_limitation", "external_dependency"] examples: - memory_exhaustion - cpu_overload - storage_unavailable - external_service_failure recovery_strategy: "graceful_degradation" fallback: "minimal_functionality_mode" user_input_errors: characteristics: ["invalid_specification", "insufficient_information", "contradictory_requirements"] examples: - empty_or_vague_specifications - contradictory_user_requirements - unrealistic_constraints - missing_critical_information recovery_strategy: "guided_specification_improvement" escalation: "request_user_clarification" ``` ## Recovery Mechanisms ### Automated Recovery Strategies ```yaml recovery_strategies: automatic_retry_with_intelligence: trigger_conditions: - transient_error_detected - timeout_without_critical_failure - temporary_resource_unavailability retry_algorithm: base_delay: 5 # seconds backoff_multiplier: 2.0 max_delay: 120 # seconds jitter: 0.2 # 20% random variation retry_enhancements: context_refresh: "reload_latest_context_before_retry" resource_reallocation: "request_additional_resources_if_available" prompt_enhancement: "add_previous_failure_context_to_agent_prompt" success_criteria: quality_threshold: 6.0 completeness_check: true consistency_validation: true iterative_improvement: trigger_conditions: - quality_below_threshold - incomplete_output_detected - validation_failures improvement_process: iteration_1: strategy: "enhance_context_with_specific_guidance" guidance_types: ["missing_sections", "quality_improvement_tips", "specific_examples"] iteration_2: strategy: "simplify_requirements_and_focus_on_essentials" simplification: ["reduce_scope", "focus_on_core_features", "use_simpler_language"] iteration_3: strategy: "use_alternative_agent_approach" alternatives: ["different_template", "alternative_prompt", "reduced_complexity"] graceful_degradation: trigger_conditions: - system_resource_exhaustion - multiple_agent_failures - unrecoverable_quality_issues degradation_levels: level_1_reduced_features: disable: ["advanced_validation", "cross_agent_checks", "parallel_execution"] maintain: ["core_functionality", "basic_quality_gates", "essential_outputs"] level_2_simplified_workflow: use: ["simplified_templates", "single_agent_fallbacks", "basic_validation_only"] skip: ["comprehensive_analysis", "detailed_architecture", "extensive_testing"] level_3_minimal_functionality: provide: ["basic_project_brief", "simple_requirements", "minimal_guidance"] inform_user: "system_operating_in_minimal_mode_due_to_constraints" fallback_mechanisms: agent_failure_fallbacks: analyst_failure: fallback_agent: "pm_with_analysis_template" quality_impact: "medium" user_notification: "using_simplified_analysis_approach" pm_failure: fallback_strategy: "analyst_creates_basic_requirements" quality_impact: "high" user_notification: "using_analyst_generated_requirements" architect_failure: fallback_strategy: "use_standard_technology_stack_template" quality_impact: "medium" user_notification: "using_proven_architecture_patterns" developer_failure: fallback_strategy: "provide_detailed_implementation_guidance_instead" quality_impact: "high" user_notification: "providing_implementation_roadmap_instead_of_code" ux_failure: fallback_strategy: "architect_includes_basic_ui_considerations" quality_impact: "medium" user_notification: "including_basic_ui_guidance_in_architecture" qa_failure: fallback_strategy: "developer_includes_basic_testing_approach" quality_impact: "low" user_notification: "including_testing_guidance_in_implementation" ``` ### Context Recovery System ```yaml context_recovery: checkpoint_system: checkpoint_frequency: - after_successful_agent_completion - before_major_workflow_transitions - after_quality_gate_passage - before_parallel_execution_groups checkpoint_data: - complete_context_snapshot - agent_output_metadata - quality_scores_and_validations - workflow_state_information - performance_metrics storage_strategy: location: ".claude/context/checkpoints/" naming: "checkpoint-{session_id}-{step_number}-{timestamp}" retention: "session_lifetime_plus_1_hour" compression: "lz4_compression" recovery_procedures: context_corruption_recovery: detection_methods: - json_schema_validation_failure - required_field_missing - data_type_inconsistencies - cross_reference_integrity_failures recovery_steps: 1. "identify_last_known_good_checkpoint" 2. "restore_context_from_checkpoint" 3. "validate_restored_context_integrity" 4. "identify_lost_work_since_checkpoint" 5. "attempt_partial_work_recovery" 6. "resume_workflow_from_recovery_point" partial_context_recovery: scenarios: - agent_completed_but_context_write_failed - network_interruption_during_context_update - concurrent_access_corruption recovery_approach: - extract_recoverable_data_from_agent_output - rebuild_context_structure_with_recovered_data - fill_missing_fields_with_computed_defaults - validate_recovered_context_completeness ``` ## Learning and Improvement System ### Error Pattern Analysis ```yaml error_learning: pattern_detection: collection_scope: "all_errors_across_all_sessions" analysis_frequency: "daily" pattern_types: - recurring_agent_failures - common_quality_issues - frequent_timeout_scenarios - typical_user_input_problems learning_algorithms: frequency_analysis: "identify_most_common_error_patterns" correlation_analysis: "find_relationships_between_errors_and_context" trend_analysis: "detect_increasing_or_decreasing_error_rates" automatic_improvements: prompt_optimization: trigger: "recurring_agent_output_quality_issues" approach: "add_specific_guidance_to_agent_prompts_based_on_common_failures" timeout_adjustment: trigger: "frequent_timeout_errors" approach: "dynamically_adjust_timeout_values_based_on_historical_performance" validation_enhancement: trigger: "recurring_validation_failures" approach: "add_new_validation_rules_based_on_common_error_patterns" workflow_optimization: trigger: "frequent_workflow_inefficiencies" approach: "modify_workflow_steps_to_avoid_common_failure_points" ``` ### Proactive Error Prevention ```yaml prevention_mechanisms: predictive_error_detection: early_warning_indicators: - context_complexity_exceeding_thresholds - user_specification_ambiguity_scores - resource_utilization_trending_toward_limits - agent_performance_degradation_patterns preventive_actions: high_complexity_detection: action: "suggest_project_scope_reduction" timing: "before_workflow_execution" ambiguous_specification_detection: action: "request_specification_clarification" timing: "during_initial_analysis" resource_constraint_prediction: action: "enable_graceful_degradation_mode_preemptively" timing: "before_resource_exhaustion" input_validation_enhancement: user_specification_validation: checks: - minimum_specification_length - required_element_presence - clarity_and_specificity_scoring - feasibility_assessment improvement_guidance: insufficient_detail: "provide_specification_enhancement_suggestions" vague_requirements: "ask_targeted_clarification_questions" unrealistic_scope: "suggest_scope_prioritization" ``` ## Monitoring and Alerting ### Real-Time Monitoring ```yaml monitoring_system: health_metrics: system_health: - error_rate_per_hour - average_recovery_time - quality_degradation_incidents - user_satisfaction_scores performance_health: - workflow_completion_rate - average_execution_time - resource_utilization_efficiency - cache_hit_ratios quality_health: - average_output_quality_scores - validation_failure_rates - cross_agent_consistency_scores - user_acceptance_rates alerting_rules: critical_alerts: - error_rate > 25% over 10 minutes - system_unavailable > 2 minutes - data_corruption_detected - security_breach_indicators warning_alerts: - error_rate > 10% over 30 minutes - quality_scores < 7.0 average over 1 hour - resource_utilization > 85% for 15 minutes - recovery_attempts > 50% of executions dashboard_metrics: real_time_display: - current_active_workflows - error_rates_and_trends - performance_metrics - quality_indicators - recovery_success_rates ``` This comprehensive Error Detection & Recovery System ensures the BMAD-Spec Orchestrator maintains high reliability and provides excellent user experience even when facing various types of failures and edge cases.