# Quality Metrics Tracking Task ## Purpose Define, collect, analyze, and track comprehensive quality metrics across all development activities. This task establishes a data-driven approach to quality improvement and provides visibility into quality trends and patterns. ## Integration with Memory System - **What patterns to search for**: Metric trend patterns, quality improvement correlations, threshold violations, anomaly patterns - **What outcomes to track**: Quality improvement rates, metric stability, alert effectiveness, action item completion - **What learnings to capture**: Effective metric thresholds, leading indicators, improvement strategies, metric correlations ## Quality Metrics Categories ### Code Quality Metrics ```yaml code_quality_metrics: static_analysis: - complexity: Cyclomatic complexity per function - duplication: Code duplication percentage - maintainability: Maintainability index - technical_debt: Debt ratio and time dynamic_analysis: - test_coverage: Line, branch, function coverage - mutation_score: Test effectiveness - performance: Response times, resource usage - reliability: Error rates, crash frequency ``` ### Process Quality Metrics - [ ] **Development Velocity**: Story points completed - [ ] **Defect Density**: Defects per KLOC - [ ] **Lead Time**: Idea to production time - [ ] **Cycle Time**: Development start to done - [ ] **Review Efficiency**: Review time and effectiveness ### Product Quality Metrics - [ ] **User Satisfaction**: NPS, CSAT scores - [ ] **Defect Escape Rate**: Production bugs - [ ] **Mean Time to Recovery**: Incident resolution - [ ] **Feature Adoption**: Usage analytics - [ ] **Performance SLAs**: Uptime, response times ## Metric Collection Framework ### Step 1: Automated Collection ```python def collect_quality_metrics(): metrics = { "code": { "coverage": get_test_coverage(), "complexity": calculate_complexity(), "duplication": detect_duplication(), "violations": count_lint_violations() }, "process": { "velocity": calculate_velocity(), "lead_time": measure_lead_time(), "review_time": average_review_time(), "build_success": build_success_rate() }, "product": { "availability": calculate_uptime(), "performance": measure_response_times(), "errors": count_error_rates(), "satisfaction": get_user_scores() } } return enrich_with_trends(metrics) ``` ### Step 2: Metric Analysis ```python def analyze_metrics(current_metrics, historical_data): analysis = { "trends": calculate_trends(current_metrics, historical_data), "anomalies": detect_anomalies(current_metrics), "correlations": find_correlations(current_metrics), "predictions": forecast_trends(historical_data), "health_score": calculate_overall_health(current_metrics) } return generate_insights(analysis) ``` ### Step 3: Threshold Management | Metric | Green | Yellow | Red | Action | |--------|-------|---------|-----|---------| | Test Coverage | >90% | 80-90% | <80% | Block deployment | | Complexity | <10 | 10-20 | >20 | Refactor required | | Build Success | >95% | 85-95% | <85% | Fix immediately | | Review Time | <4hr | 4-8hr | >8hr | Escalate | | Error Rate | <0.1% | 0.1-1% | >1% | Incident response | ## Quality Dashboard Design ### Real-Time Metrics ```yaml realtime_dashboard: current_sprint: - velocity_burndown: Actual vs planned - quality_gates: Pass/fail status - defect_trend: New vs resolved - coverage_delta: Change from baseline system_health: - error_rate: Last 15 minutes - response_time: P50, P95, P99 - availability: Current status - active_incidents: Count and severity ``` ### Historical Analytics ```python historical_views = { "quality_trends": { "timeframes": ["daily", "weekly", "monthly", "quarterly"], "metrics": ["coverage", "complexity", "defects", "velocity"], "comparisons": ["period_over_period", "target_vs_actual"] }, "pattern_analysis": { "defect_patterns": "Common causes and times", "performance_patterns": "Peak usage impacts", "team_patterns": "Productivity cycles" } } ``` ## Alert and Action Framework ### Alert Configuration ```python alert_rules = { "critical": { "coverage_drop": "Coverage decreased >5%", "build_failure": "3 consecutive failures", "production_error": "Error rate >2%", "sla_breach": "Response time >SLA" }, "warning": { "trend_negative": "3-day negative trend", "threshold_approach": "Within 10% of limit", "anomaly_detected": "Outside 2 std deviations" } } def trigger_alert(metric, severity, value): alert = { "metric": metric, "severity": severity, "value": value, "threshold": get_threshold(metric), "action_required": get_required_action(metric, severity) } notify_stakeholders(alert) ``` ### Action Tracking ```markdown ## Quality Action Item **Metric**: {metric_name} **Issue**: {threshold_violation} **Severity**: {critical/high/medium} **Detected**: {timestamp} ### Required Actions 1. **Immediate**: {emergency_action} 2. **Short-term**: {fix_action} 3. **Long-term**: {prevention_action} ### Tracking - **Owner**: {responsible_person} - **Due Date**: {deadline} - **Status**: {in_progress/blocked/complete} ``` ## Success Criteria - 100% automated metric collection - <5 minute data freshness - Zero manual metric calculation - 90% alert accuracy (not false positives) - Action completion rate >95% ## Memory Integration ```python # Quality metrics memory quality_metrics_memory = { "type": "quality_metrics_snapshot", "timestamp": collection_time, "metrics": { "code_quality": code_metrics, "process_quality": process_metrics, "product_quality": product_metrics }, "analysis": { "trends": identified_trends, "anomalies": detected_anomalies, "correlations": metric_relationships, "health_score": overall_score }, "alerts": { "triggered": alerts_sent, "false_positives": incorrect_alerts, "missed_issues": undetected_problems }, "actions": { "created": action_items_created, "completed": actions_resolved, "effectiveness": improvement_achieved }, "insights": { "patterns": recurring_patterns, "predictions": forecast_accuracy, "recommendations": suggested_improvements } } ``` ## Metrics Report Template ```markdown # Quality Metrics Report **Period**: {start_date} - {end_date} **Overall Health**: {score}/100 ## Executive Summary - **Quality Trend**: {improving/stable/declining} - **Key Achievements**: {top_improvements} - **Main Concerns**: {top_issues} - **Action Items**: {count} ({completed}/{total}) ## Detailed Metrics ### Code Quality | Metric | Current | Target | Trend | Status | |--------|---------|---------|--------|---------| | Coverage | {n}% | {t}% | {↑↓→} | {🟢🟡🔴} | | Complexity | {n} | {t} | {↑↓→} | {🟢🟡🔴} | ### Process Quality | Metric | Current | Target | Trend | Status | |--------|---------|---------|--------|---------| | Velocity | {n} | {t} | {↑↓→} | {🟢🟡🔴} | | Lead Time | {n}d | {t}d | {↑↓→} | {🟢🟡🔴} | ### Product Quality | Metric | Current | Target | Trend | Status | |--------|---------|---------|--------|---------| | Availability | {n}% | {t}% | {↑↓→} | {🟢🟡🔴} | | Error Rate | {n}% | {t}% | {↑↓→} | {🟢🟡🔴} | ## Insights & Patterns 1. **Finding**: {insight} - Impact: {description} - Recommendation: {action} ## Action Plan | Action | Owner | Due Date | Status | |--------|--------|----------|---------| | {action} | {owner} | {date} | {status} | ## Next Period Focus {key_areas_for_improvement} ``` ## Brotherhood Collaboration - Metric definition with all teams - Threshold setting with stakeholders - Alert configuration with ops team - Action planning with leadership