# Create Comprehensive PR ## Task Overview **Agent:** po (Product Owner - Business Context Owner) **Action Type:** pr-creation-with-context **Duration:** 5-8 minutes **LLM-Optimized:** Business-driven PR with comprehensive context ## Purpose Generate pull request with business summary, technical changes, learning extraction, and validation evidence for streamlined review and delivery. ## Inputs - Story implementation file with complete context - Commit information and PR context from commit-and-prepare-pr - Learning review results and team consensus - All validation evidence and quality metrics - Epic completion status and retrospective context ## Outputs - GitHub PR created with comprehensive description - PR linked to story and epic context - Review assignments based on learning items - Story file updated with PR information ## Execution Steps ### Step 1: Generate PR Title (1 minute) ``` PR_TITLE_FORMAT: [Epic{epic_number}.{story_number}] {business_focused_title} Examples: - [Epic1.Story3] Add batch priority selector for dispatch optimization - [Epic2.Story1] Implement mobile scanning workflow for operations - [Epic3.Story2] Enhance order validation with QR code integration ``` ### Step 2: Create PR Description (4-6 minutes) Generate comprehensive PR description: ```markdown # Epic {epic_number}.{story_number}: {story_title} ## 🎯 Business Summary **Epic:** {epic_title} **Epic Progress:** {epic_completion_percentage}% complete ({completed_stories}/{total_stories} stories) **Business Value:** {primary_business_value} **User Impact:** {user_impact_description} **Success Metrics:** {success_criteria} **Epic Status:** {IN_PROGRESS/COMPLETE} ### Key Business Outcomes - ✅ {business_outcome_1} - ✅ {business_outcome_2} - ✅ {business_outcome_3} ## 🔧 Technical Changes **Type:** {feature/enhancement/fix/refactor} **Complexity:** {SIMPLE/MODERATE/COMPLEX} **Architecture Impact:** {HIGH/MEDIUM/LOW/NONE} ### Implementation Summary - **{component_1}:** {change_description} | Impact: {HIGH/MEDIUM/LOW} - **{component_2}:** {change_description} | Impact: {HIGH/MEDIUM/LOW} - **{component_3}:** {change_description} | Impact: {HIGH/MEDIUM/LOW} ### Files Changed - `{file_1}` - {change_type} ({line_count} lines) - `{file_2}` - {change_type} ({line_count} lines) - `{file_3}` - {change_type} ({line_count} lines) **Total:** {file_count} files, {total_lines} lines changed ## 📚 Learning Extraction & Actions ### 🚨 Immediate Actions (Current Sprint) - [ ] **{urgent_action_1}** - @{owner} - Due: {date} - [ ] **{urgent_action_2}** - @{owner} - Due: {date} ### 📋 Next Sprint Integration - [ ] **{next_action_1}** - @{owner} - Sprint Planning Item - [ ] **{next_action_2}** - @{owner} - Sprint Planning Item ### 🚀 Future Epic Candidates - **{epic_candidate_1}** - Priority: {HIGH/MEDIUM/LOW} - Est: {effort} - **{epic_candidate_2}** - Priority: {HIGH/MEDIUM/LOW} - Est: {effort} ### 🎉 Epic Completion Status **Epic Progress:** {epic_completion_percentage}% complete **Epic Retrospective:** {TRIGGERED/PENDING} {epic_completion_section} ### 🔧 Architecture Improvements - **{arch_improvement_1}** - Timeline: {current/next/backlog} - **{arch_improvement_2}** - Timeline: {current/next/backlog} ## ✅ Validation Evidence ### Quality Gates - **Tests:** {test_count} added, {test_coverage}% coverage - **Linting:** ✅ PASS - **Type Safety:** ✅ PASS - **Build:** ✅ PASS - **E2E Tests:** ✅ PASS ({test_count} scenarios) ### Review Process - **Pre-Review Validation:** ✅ COMPLETE - **Round 1 Reviews:** ✅ COMPLETE ({review_count} reviewers) - **Feedback Consolidation:** ✅ COMPLETE ({feedback_items} items) - **Fix Implementation:** ✅ COMPLETE - **Final Validation:** ✅ COMPLETE ### Story DoD Compliance - **Business Requirements:** ✅ MET - **Technical Requirements:** ✅ MET - **Quality Standards:** ✅ MET - **Documentation:** ✅ COMPLETE - **Learning Extraction:** ✅ COMPLETE ## 🔍 Test Coverage & Scenarios ### New Tests Added - `{test_file_1}` - {test_count} tests - {coverage_area} - `{test_file_2}` - {test_count} tests - {coverage_area} ### E2E Scenarios Covered - ✅ {scenario_1} - PASS - ✅ {scenario_2} - PASS - ✅ {scenario_3} - PASS ### Edge Cases Tested - ✅ {edge_case_1} - PASS - ✅ {edge_case_2} - PASS ## 📖 Documentation Updates - **Story File:** Updated with complete implementation context - **Epic Progress:** Updated with story completion - **Architecture Docs:** {updated/not_applicable} - **API Documentation:** {updated/not_applicable} - **User Documentation:** {updated/not_applicable} - **Epic Retrospective:** {SCHEDULED/NOT_APPLICABLE} ## 🔗 Related Links - **Epic:** [Epic {epic_number}](../prd/epic{epic_number}.md) - **Story:** [Story {epic_number}.{story_number}](../stories/epic{epic_number}.story{story_number}.story.md) - **Commit:** {commit_hash} --- **Story Status:** Done → Ready for Delivery **Epic Status:** {epic_completion_percentage}% complete **Epic Retrospective:** {TRIGGERED/PENDING} **Implementation Time:** {actual_time} (Est: {estimated_time}) **Quality Score:** {quality_score}/10 **Learning Items:** {learning_count} captured {epic_completion_celebration} 🤖 Generated with [Claude Code](https://claude.ai/code) ``` ### Step 3: Create PR with GitHub CLI (1-2 minutes) ```bash gh pr create --title "[Epic{epic_number}.Story{story_number}] {business_title}" --body "$(cat <<'EOF' {comprehensive_pr_description_from_step_2} EOF )" ``` ### Step 4: Assign Reviewers Based on Learning Items (1 minute) ```bash # Auto-assign reviewers based on learning categories gh pr edit --add-reviewer {architect_username} # For ARCH_CHANGE items gh pr edit --add-reviewer {po_username} # For FUTURE_EPIC items gh pr edit --add-reviewer {dev_team_username} # For URGENT_FIX items gh pr edit --add-reviewer {sm_username} # For PROCESS_IMPROVEMENT items ``` ### Step 5: Update Story File with PR Information (1 minute) ```markdown ## Pull Request Created **PO:** {po_name} | **Date:** {YYYY-MM-DD} | **PR:** #{pr_number} ### PR Details - **Title:** [Epic{epic_number}.Story{story_number}] {business_title} - **URL:** {pr_url} - **Reviewers:** {reviewer_list} - **Status:** Open → Ready for Review ### PR Content Summary - Business summary: ✅ COMPLETE - Epic completion status: ✅ COMPLETE - Technical changes: ✅ COMPLETE - Learning extraction: ✅ COMPLETE - Validation evidence: ✅ COMPLETE - Review assignments: ✅ COMPLETE - Epic retrospective context: ✅ COMPLETE (MANDATORY if epic 100% complete) **Final Status:** Story Implementation → PR Ready for Delivery **Epic Retrospective Status:** {MANDATORY_TRIGGERED/NOT_APPLICABLE} ``` ## Success Criteria - [ ] PR created with comprehensive business and technical context - [ ] Epic completion status prominently displayed - [ ] Epic retrospective context included (if triggered) - [ ] Learning items prominently featured with action assignments - [ ] Validation evidence clearly documented - [ ] Appropriate reviewers assigned based on learning categories - [ ] Story file updated with PR information - [ ] PR ready for efficient review and merge ## PR Description Guidelines - **Business-First:** Lead with business value and user impact - **Epic-Context:** Prominently display epic completion status - **Learning-Prominent:** Highlight learnings and future actions - **Evidence-Based:** Include objective validation proof - **Action-Oriented:** Clear next steps and ownership - **Comprehensive:** All context needed for informed review - **Celebration:** Highlight epic completion if applicable ## Reviewer Assignment Logic ``` REVIEWER_MAPPING: - ARCH_CHANGE items → @architect (technical review) - FUTURE_EPIC items → @po (business validation) - URGENT_FIX items → @dev-team (technical validation) - PROCESS_IMPROVEMENT → @sm (process review) - TOOLING items → @infra-devops (infrastructure review) - KNOWLEDGE_GAP → @sm + @po (team development) ``` ## Integration Points - **Input from:** commit-and-prepare-pr (commit and context) - **Output to:** update-epic-progress (epic tracking) - **Handoff:** "PR created and ready for review. Epic progress tracking initiated." ## LLM Optimization Notes - Business-first structure prioritizes stakeholder understanding - Learning extraction prevents knowledge loss - Evidence-based validation reduces review overhead - Action-oriented format drives immediate value - Comprehensive context enables faster review cycles - Token-efficient format maintains readability while providing complete information